科学オリンピックへの道 **岡山物理コンテスト 2015** 問題 A

2015年11月8日(日) 10:20~11:10(50分)

問題にチャレンジする前に次の**<注意事項>**と**<指数を用いた数の表記>**をよく読んでください。 問題は大問 14 題からなります。問題は一見難しく見えても、よく読むとわかるようになっています。 どの問題から取り組んでも結構です。最後まであきらめずにチャレンジしてください。

<注意事項>

- 1. 開始の合図があるまで、問題冊子(全21ページ)を開けてはいけません。
- 2. 電卓を使用してもよろしい。
- 3. 携帯電話などの電源は切り、カバンの中にしまっておきなさい。
- 4. 解答はすべて解答用紙に記入しなさい。解答用紙は1枚です。必ずチャレンジ番号と名前を記入しなさい。
- 5. 気分が悪くなったりトイレに行きたくなったりしたとき、または質問があるときは手を挙げて監督者に知らせなさい。
- 6. 終了の合図があったら、ただちに解答を止め、チャレンジ番号と名前を確認の上、監督者の指示を 待ちなさい。
- 7. 問題冊子は持ち帰りなさい。

<指数を用いた数の表記>

大きい数や小さい数を扱うときには、指数表記を利用することが多い。

$$1.2 \times 10^3 = 1.2 \times 10 \times 10 \times 10 = 1200$$
 $1.2 \times 10^{-3} = 1.2 \times \frac{1}{10^3} = \frac{1.2}{1000} = 0.0012$

指数表記では、一般に $a \times 10^n$ ($1 \le a < 10$) の形で表す。 このように記述することで、大きな数や小さな数を簡潔に表現できる。

第1問

図1-1のように、水平面とのなす角が 30° の なめらかな斜面上に質量 1.0kg の台車を置いて 静かにはなしたところ, 台車は斜面下向き (➡の方向)に運動した。重力加速度の大きさ を 9.8m/s² とする。

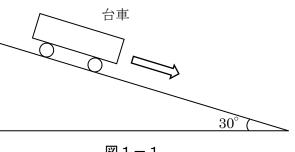
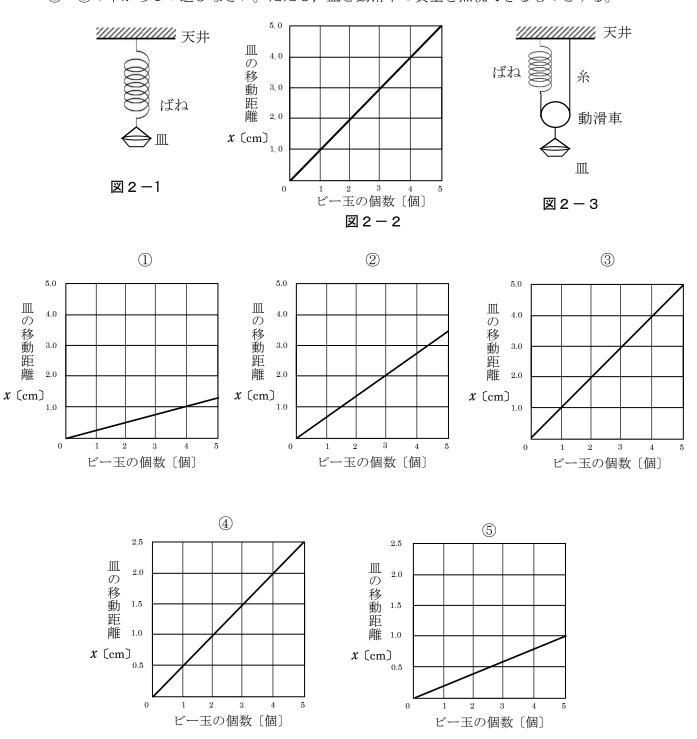


図1-1

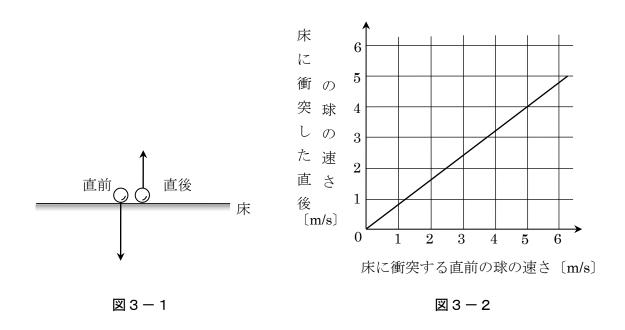
問1 斜面を下る台車の加速度の大きさは何 m/s^2 か。最も適当なものを、次の①~⑤の中から 1つ選びなさい。


- ① 1.6m/s^2
- ② 3.3m/s^2
- $3 4.9 \text{m/s}^2$
- $4 8.5 \text{m/s}^2$
- $\bigcirc 9.8 \text{m/s}^2$

間2 次に、台車におもりをのせ、台車とおもりをあわせた質量を台車の2倍、3倍にして斜面下 向きに運動させた。このとき、台車とおもりを一体と考えた物体にはたらく合力の大きさ、およ び加速度の大きさは、台車のみのときと比べてどのように変化するか。最も適当な組合せを、次 の①~⑥の中から1つ選びなさい。

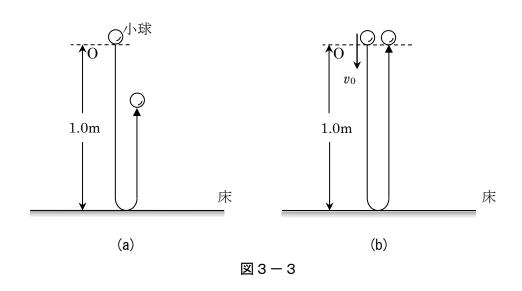
	合力の大きさ	加速度の大きさ	
1	2倍、3倍に増加する	$\frac{1}{2}$ 倍, $\frac{1}{3}$ 倍に減少する	
2	2倍、3倍に増加する	2倍、3倍に増加する	
3	2倍、3倍に増加する	変わらない	
4	変わらない	$\frac{1}{2}$ 倍, $\frac{1}{3}$ 倍に減少する	
5	変わらない	2倍、3倍に増加する	
6	変わらない	変わらない	

第2問


あるばねを図2-1のようにつなぎ、皿の中にビー玉を1個、2個、…と入れるとビー玉の個数と皿の移動距離x[cm]の関係は図2-2のようになった。同じばねを図2-3のようにつなぐと、ビー玉の個数と皿の移動距離x[cm]の関係を表す図はどのようになるか。最も適当な図を、次の1~5の中から1つ選びなさい。ただし、皿と動滑車の質量を無視できるものとする。

第3問

図3-1のように、小球が水平な床に垂直に衝突し、小球がはね返る運動を考える。図3-2は、床に衝突する直前の小球の速さと、床に衝突した直後の小球の速さの関係を表したものである。このとき、床に衝突する直前の小球の速さに対する、床に衝突した直後の小球の速さの比を反発係数(はね返り係数)といい、次式のように与えられる。


反発係数(はね返り係数) = 床に衝突した直後の小球の速さ 床に衝突する直前の小球の速さ

間1 図3-2より、小球と床との間の反発係数はいくらか。最も適当な値を、次の① \sim ⑤の中から1つ選びなさい。

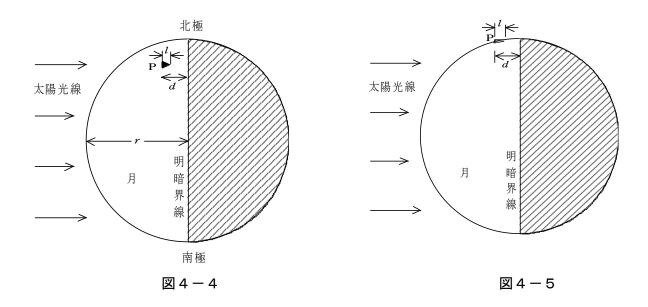
- ① 0.20
- 20.50
- ③ 0.64
- **4** 0.80
- ⑤ 0.89

いま、床からの高さ 1.0m の点 O からこの小球を静かにはなすと、小球は落下して床に衝突した後、図3-3(a)のように、点 O の高さに達することはなかった。次に、点 O から同じ床に向け、小球を下向きに速さ v_0 で投げ下ろすと、図3-3(b)のように、小球はちょうど点 O まではね返った。

間2 このとき、 v_0 は何 m/s か。最も適当な値を、次の①~⑤の中から1つ選びなさい。ただし、重力加速度の大きさを 9.8m/s² とし、 $\sqrt{10} = 3.2$ を使ってもよい。

- ① 1.1
- ② 2.2
- ③ 3.3
- 4.4
- $\bigcirc 5.5$

第4問


ガリレオ・ガリレイは、屈折望遠鏡を作って天体を観測し、木星の衛星、金星の満ち欠け、黒点などさまざまな発見・観測を行い、地動説を唱える根拠とした。その発見は 1610 年に「星界の報告」(図4-1)に著しているが、その中で月の山の高さも推定しているので、同様に推定してみよう。

月には平坦な地形の中に突き出た山がある。月の北半球にある「ピトン」はその1つで、下弦の月の暗い部分と明るい部分の境界線(明暗界線)に近いところにある(24-2)。24-3は、24-2中の口部分を拡大した写真である。

図は転載のため略

 図4-1
 図4-2
 図4-3

 (図4-2, 図4-3は「プロジェクト物理~天体の運動~」より転載)

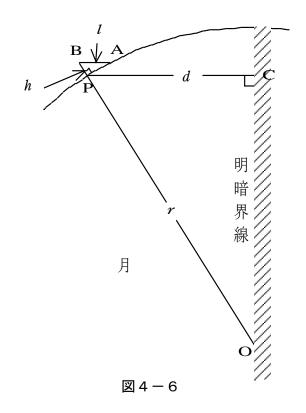


図4-4は、地球から見た下弦の月を模式的に表していて、Pがピトンである。月の半径をr、明暗界線からピトンPまでの距離をd、ピトンPの影の長さをlとする。太陽は月から非常に遠いので、太陽からの光線は平行と考えてよい。図4-5はピトンPを通る断面図で、図4-6はピトンPの高さを相似の三角形から求めるための模式図である。図4-6で、ピトンPの高さをh、影の見かけの長さをl(線分AB)、明暗界線からピトンPまでの距離をd、月の半径(すなわち、ピトンPから月の中心Oまで引いた線の長さ)をrとする。ピトンPの高さや影が月の大きさと比べて非常に小さいとき、 $\triangle BPA$ と $\triangle PCO$ は相似の関係にあるとみなすことができる。

問1 ピトン P の高さ h を、d、l、r を用いるとどのように表せるか。最も適当なものを、次の① ~⑥の中から 1 つ選びなさい。

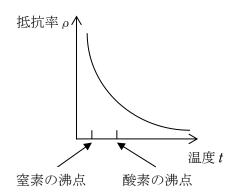
d, l, r はすべて写真から測定でき、図4-2を使った測定では、月の直径は 2r=8.1cm、明暗界線からピトン P までの距離は d=0.30cm となる。また、図4-3を使ってピトン P の影の長さを図4-2の縮尺で表すと、l=0.090cm となる。

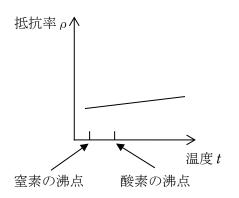
問2 月の直径は 3476km であることがわかっている。実際のピトン P の高さ h は何 km か。最も適当なものを、次の①~⑥の中から 1 つ選びなさい。

① 1.4 km ② 2.9 km ③ 5.8 km ④ 14 km ⑤ 29 km ⑥ 58 km

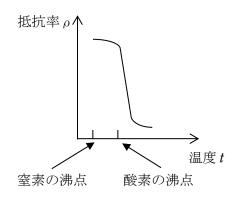
第5問

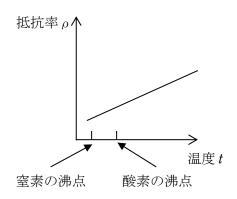
気体には、体積を急激に変化(断熱変化)させると温度が変わるという性質がある。次の①~④の中で、『気体の断熱変化による温度降下』と最も関係の深い現象はどれか。1つ選びなさい。


- ① 冷えたジュースが入ったコップを置いておくとコップの外面に水滴が付く。
- ② 夏の日射の強い日などに入道雲ができる。
- ③ 氷を手のひらに置くと冷たく感じる。
- ④ 庭先に水をまく(打ち水をする)と涼しくなる。

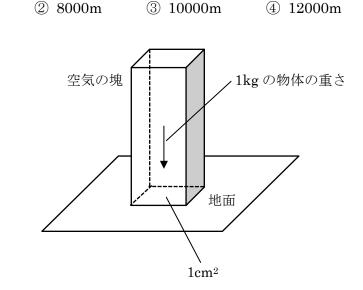

第6問

電子体温計や家電製品などには抵抗温度計が使われている。抵抗温度計は抵抗率 ρ が温度 t に対して変化する導体や半導体を利用している。


いま、窒素の沸点(-196°C)から酸素の沸点(-183°C)までの温度を正確に測定できるような抵抗温度計を作りたい。最も精密に温度が測定できる温度特性を示しているものは次の① \sim ④の中ではどれか。最も適当なものを1つ選びなさい。ただし、縦軸の目盛りは、どれも同じとする。



3



第7問

① 6000m

間1 1気圧は 1.0×10^5 Pa である。これは 1cm^2 あたりに 1 kg の物体をのせたときの重さと同じである。いま,空気の密度が地上からの高さによらず 1.3kg/m^3 で一定であるとすると,空気の層は地上から何 m の高さまであることになるか。最も適当なものを,次の①~④の中から 1 つ選びなさい。ただし,重力加速度の大きさを 9.8m/s^2 とする。

- **間2** マリアナ海溝は水深約 10000m あり、世界で最も深い海溝として知られている。平成 26 年には深さ 8145m の海底で深海魚などの生物が生息していることが発見された。この深さ 8145m に生息する深海魚が受ける圧力(水圧)は 1 cm² あたり何 kg の物体をのせたときの重さと同じであるか。最も適当なものを、次の①~④の中から 1 つ選びなさい。ただし、海水の密度は、水の密度 1.0×10^3 kg/m³ と等しく、深さによらず一定であるものとする。
 - ① 8kg ② 80kg ③ 800kg ④ 8000kg

第8問

図8-1のように、材質、太さが一様な円柱形をした導線 AD がある。AD 間を3等分にする位 置に B, C を定める。いま、図8-2のように、BC 間だけが引き伸ばされて 2 倍の長さになった。

導体の電気抵抗Rは、導体の長さをl、断面積をSとすると、 $R=\rho \frac{l}{s}$ と表される。ただし、抵抗率 ρ は一定であるとする。また、引き伸ばされた部分の体積は変わらないとする。

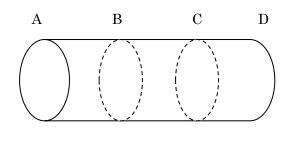
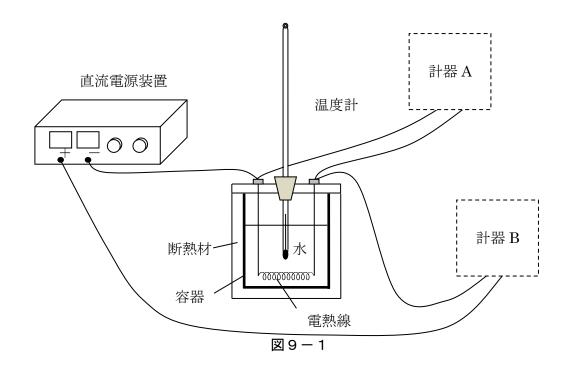
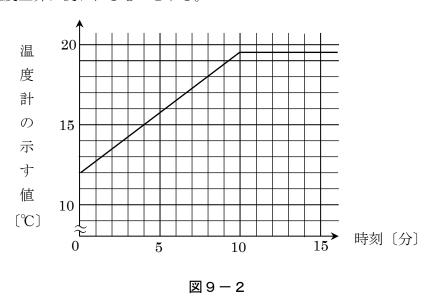
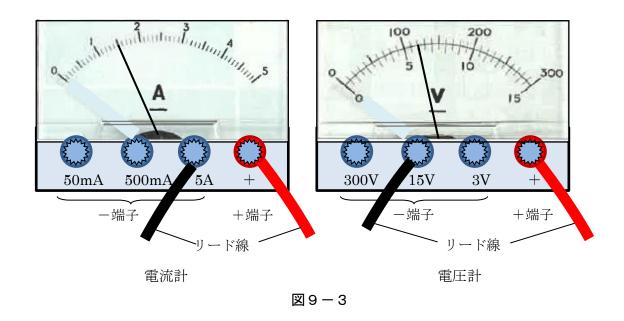



図8-1



このとき, AD 間の合成抵抗はもとの何倍になるか。最も適当なものを,次の①~⑤の中から1 つ選びなさい。

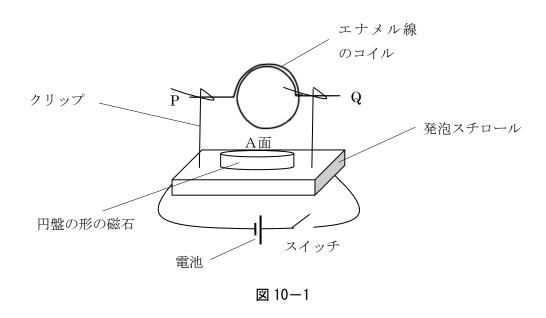

- ① $\frac{1}{4}$ 倍 ② $\frac{1}{2}$ 倍 ③ 1 倍 ④ 2 倍 ⑤ 4 倍


第9問

電熱線に発生するジュール熱について調べるため、 $\mathbf{29-1}$ のような電気回路を組んで、電気と 熱に関する実験を行った。回路中の計器 A、B は、電流計または電圧計である。

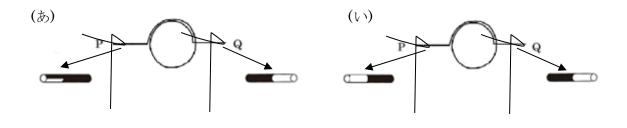
いま,断熱材で囲まれた容器に入っている水の中に電熱線を入れ,かくはんしながらこの電熱線に一定の電流を時刻 0 から 10 分間流したところ,温度計の示す値は $\mathbf{29-2}$ のように変化した。このとき,電熱線に流れる電流を電流計で,電熱線の両端にかかる電圧を電圧計で測定したところ,温度計の示す値が変化しているとき,計器の針はそれぞれ $\mathbf{29-3}$ (次ページ) のような値を示していた。ただし,水 1 g を 1 1 1 だけ上昇させるのに必要な熱量を 1 1 とし,電熱線で発生した熱はすべて水の温度上昇に使われるものとする。

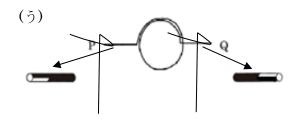
問1 図9-1の回路中の計器 A, B はそれぞれ電流計,電圧計のどちらであるか。また、電熱線の電力は何 W か。最も適当な組合せを、次の① \sim 8の中から1つ選びなさい。


	計器 A	計器 B	電熱線の電力
1	電流計	電圧計	4.0W
2	電流計	電圧計	9.0W
3	電流計	電圧計	80W
4	電流計	電圧計	180W
5	電圧計	電流計	4.0W
6	電圧計	電流計	9.0W
7	電圧計	電流計	80W
8	電圧計	電流計	180W

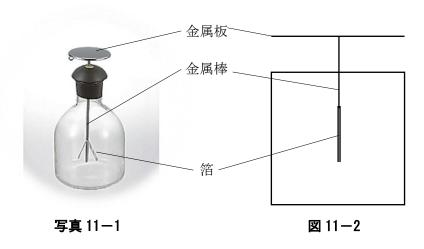
問2 容器に入っていた水の質量は何gか。最も適当な値を、次の① \sim ⑥の中から1つ選びなさい。

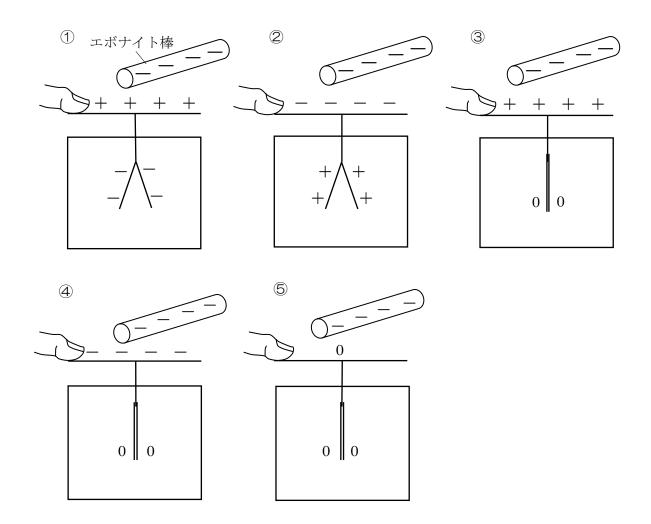
① $65\,\mathrm{g}$ ② $76\,\mathrm{g}$ ③ $131\,\mathrm{g}$ ④ $171\,\mathrm{g}$ ⑤ $290\,\mathrm{g}$ ⑥ $342\,\mathrm{g}$


第10問


エナメル線を巻いて作ったコイル、円盤の形をした磁石、クリップ、電池、発泡スチロール、スイッチを用いて、図10-1 のようなクリップモーターを作製した。いま、コイルの面が鉛直に向いた状態でスイッチを閉じると、コイルが回転し続けた。このとき、コイルの回転はP側から見て反時計回りであった。

次の文章中の1・2 に入る図や記号の組合せとして最も適当なものを、次の① \sim ⑥の中から1つ選びなさい。

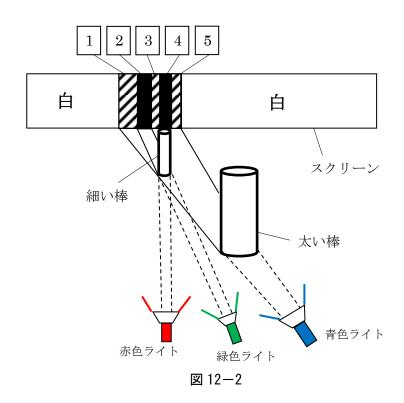

コイルが回転し続けるためには、コイルの左右に出ている $P \ge Q$ のエナメル線の表面をはがす必要がある。次の図の(あ)~(う)のうち、エナメル線の表面のはがし方として適切なのは、1である。また、発泡スチロール上に置かれている磁石の上面 A は N 極、S 極のうち、2 極である。



	1	2
1	あ	N
2	あ	S
3	٧١	N
4	٧١	S
5	う	N
6	う	S

第11問

はじめ、帯電していない箔検電器の金属板に、-(負)に帯電したエボナイト棒を近づけた。その後、エボナイト棒を近づけたまま、金属板に指で触れる。このときの箔検電器の金属板、箔の電荷分布の様子を、+(正)、-(負)を用いて表した図として最も適当なものを、次の①~⑤の中から1つ選びなさい。ただし、電荷が分布していないときは0と表示している。


第12問

赤色,緑色,青色は光の3原色といわれる。図12-1は,光の3原色を混ぜたときの様子を示している。赤色と緑色の光が混ざると黄色,緑色と青色が混ざると空色,青色と赤色が混ざると赤紫色,赤,緑,青色すべてが混ざると白色になる。図12-1を参考に、以下の問いに答えなさい。

図 12-1 光の 3 原色

図 12-2 のように、赤色、緑色、青色の光を幅広く照らす小さなライトでスクリーンを一様に照らし、途中に太い棒を置き、太い棒の影をスクリーンに映す。次に、図 12-2 のように、影ができたスクリーンと太い棒の間に、細い棒を置いてその影をスクリーンに映すと、色のついた影 $1 \sim 5$ が見えた。

影1~5の色の組合せとして最も適当なものを、次の1~6の中から1つ選びなさい。

	1	2	3	4	5
1	赤	黄	赤紫	空	赤
2	赤	空	緑	緑	緑
3	黄	赤	緑	赤	黄
4	黄	赤	黄	緑	黄
5	空	赤紫	空	赤紫	空
6	空	赤紫	黄	赤紫	緑

第 13 問

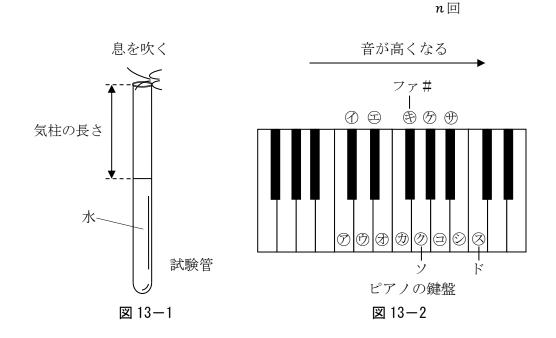


表 13-3 1.059 の累乗

n	1.059 ⁿ の値	n	1.059 ⁿ の値
1	1.06	7	1.49
2	1.12	8	1.58
3	1.19	9	1.68
4	1.26	10	1.77
5	1.33	11	1.88
6	1.41	12	2.00

(四捨五入して小数第2位まで表示)

間1 図 13-1 のとき、図 13-2 の「ソ」の音(②)が大きく聞こえた。この「ソ」の音から図 13 -2 の「ド」の音(②)に変えるためには、管口から水面までの気柱の長さを何倍にすればよいか。最も適当な値を、次の①~⑥の中から 1 つ選びなさい。

① 0.67 倍 ② 0.75 倍 ③ 0.84 倍 ④ 1.19 倍 ⑤ 1.33 倍 ⑥ 1.49 倍

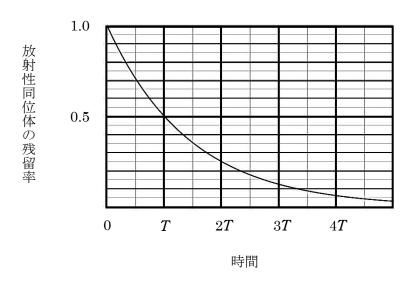
問2 問1の実験を行ったときの室温は 35℃であった。気柱の長さを**図** 13-1 の状態に戻し、再び試験管の口に息を吹きかけ、**図** 13-2 の「ソ」の音(②)の左隣の「ファ#」の音(③)に聞こえるようにするためには室温を何℃にすればよいか。最も適当な値を、次の①~⑥の中から 1 つ選びなさい。ただし、気温が t [℃] のとき、空気中を伝わる音の速さ V [m/s] は、V=331.5+0.6 t と表せる。

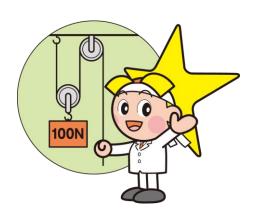
① 2° C ② 6° C ③ 10° C ④ 14° C ⑤ 21° C ⑥ 42° C

第 14 問

岡山県では昔の人々が使用していた土器などが出土しているが, 放射性炭素年代測 定という方法によりその年代を知ることができる。この方法は土器があった地層中の 炭化した木材や果皮などに含まれる放射性同位体炭素 ¹⁴C の存在比率を調べることに より、その土器がいつ頃作製されたかを調べることができる。

放射性同位体は、放射線を出して別の同位体に変わる。そのため、生きた植物に含まれる放射性 同位体 ¹⁴C の割合は時代によらず一定と考えてよいが、その植物が死んだ後は放射性同位体の数が だんだん少なくなっていく。このとき、残っている放射性同位体の数がもとの半分になる時間 T を 半減期という。この半減期は、放射性同位体の種類によって決まっている。




図 14-1 放射線を出さずに残っている放射性同位体の残留率の時間変化

いま、ある地層から土器が出土したとする。その土器があった地層中の炭化した木材や果皮に含 まれる放射性同位体 ¹⁴C の割合は、現在の放射性同位体 ¹⁴C の 75%であった。この土器は、今から 約何年前のものと推定できるか。図14-1に示す放射線を出さずに残っている放射性同位体の残留 率の時間変化のグラフを利用して求め、最も適当なものを、次の①~④の中から1つ選びなさい。 ただし、放射性同位体 ¹C の半減期は 5730 年であり、時代によらず常に一定であるとする。

- ① 約 1400 年前

- ② 約 2400 年前 ③ 約 4300 年前 ④ 約 11500 年前

<以下余白>

岡山県マスコット ももっち