環境中超微量有害化学物質の分析、検索技術の開発に関する研究 - 環境ホルモン調査におけるPOPs等分析のための基礎的検討-

Basic Studies on the Determination of POPs

杉山広和,浦山豊弘,鷹野 洋,藤原博一,劒持堅志(水質第二科)

Hirokazu Sugiyama, Toyohiro Urayama, Hiroshi Takano, Hiroichi Fujiwara, Katashi Kenmotsu

【調査研究】

環境中超微量有害化学物質の分析、検索技術の開発に関する研究

-環境ホルモン調査におけるPOPs等分析のための基礎的検討-

Basic Studies on the Determination of POPs

杉山広和,浦山豊弘,鷹野 洋,藤原博一,劒持堅志(水質第二科)

Hirokazu Sugiyama, Toyohiro Urayama, Hiroshi Takano, Hiroichi Fujiwara, Katashi Kenmotsu

要 旨

水質試料,底質試料中の残留性有機汚染物質(POPs)等を簡便に同時分析するため,抽出方法,クリーンアップ方 法などについて基礎的な検討を行った。水質試料はヘキサン抽出及び5%含水フロリジルカラムクロマトグラフィー, 底質は高速溶媒抽出装置(ASE),脱硫黄処理,硫酸洗浄及び硫酸シリカゲルカラムクロマトグラフィーを組み合わせ た簡便な前処理を行うことにより,十分な抽出やクリーンアップ効果が得られた。

[キーワード: POPs, ASE, カラムクロマトグラフィー, HRGC/HRMS]

1 はじめに

岡山県では平成11年度から水質23地点及び底質11地 点について,環境ホルモン物質として疑いのある24物 質群の環境調査を行っている。平成17年度からは新た に残留性有機汚染物質(POPs)を調査対象物質に加 え,調査を実施することとなった。

環境ホルモン調査では24物質群を7系統に分けて分 析を行なっているため,できるだけ簡便にPOPsを同 時分析できる分析法の確立を目標に,分析法の検討を 行ったので報告する。

2 実験方法

2.1 試薬及び器具

- ・クリーンアップスパイク: α -HCH-¹³C₆, β -HCH-¹³C₆, γ -HCH-¹³C₆, γ -HCH-¹³C₆ (Lindane-¹³C₆), δ -HCH-¹³C₆, p,p'-DDT-¹³C₁₂, o,p'-DDT-¹³C₁₂, p,p'-DDD-¹³C₁₂, o,p'-DDD-¹³C₁₂, o,p'-DDE-¹³C₁₂, o,p'-DDE-¹³C₁₂, HCB-¹³C₆, trans-chlordane-¹³C₁₀, cis-nonachlor-¹³C₁₀, trans-nonachlor-¹³C₁₀
- ・シリンジスパイク:PCB#8⁻¹³C₁₂, PCB#95⁻¹³C₁₂, PCB#170⁻¹³C₁₂, PCB#202⁻¹³C₁₂
- ・5%含水フロリジル:和光純薬製フロリジールPRを 130℃で15時間活性化後,5%相当の水を含水させた。
- ・5%含水シリカゲル:和光純薬製シリカゲルWakogel

C-200を130℃で15時間活性化後,5%相当の水を含水させた。

- ・44%硫酸シリカゲル:和光純薬製
- ・クロマト管:ガラス製,内径10mm,長さ350mm又は150mm
- その他の試薬は残留農薬試験用又は特級試薬を使用した。

2.2 分析試料

- ・環境水質:岡山市内の河川水
- ・環境底質:倉敷市水島沖の海底土
- 2.3 装置及び条件
- 2.3.1 高速溶媒抽出装置:ダイオネクス社製
 ASE300型

抽出条件

- ・試料容器:66mL(底質湿泥20g+ハイドロマトリックス10g)
- ・圧力設定:1500psi
- ・抽出溶媒,温度,時間及び繰り返し回数:

アセトン100℃5分間×2~3回

トルエン120℃5分間×2回

 2.3.2 ガスクロマトグラフ質量分析装置 (HRGC/HRMS):

Agilent製6890型GC, JEOL製JMS700D型(高分解能

二重収束MS)

測定条件

(a) HRGC

- ・カラム:キャピラリーカラム (Agilent製, DB-5MS)
 長さ60m×内径0.25mm, 膜厚0.25 µ m
- ・昇温条件:90(2分)-15℃/分-160℃(0分)-5℃/分-310℃(5分)
- ・注入口温度:260℃
- ・注入法:スプリットレス法(1.5分後パージ開始)
- 注入量:1µL
- ・キャリアガス:He 1mL/分 (定流量)
- (b) HRMS
- ・インタフェース部:ダイレクトカップリング (300℃)
- ・イオン化法: EI
- ・イオン化電圧:45 e V
- ・イオン源温度:270℃
- イオン化電流:700 µ A
- ・検出モード:SIM
- ·分解能:10,000
- ・加速電圧:10kV

表1-1 測定質量グループリスト(低質量グループ)

G#:11	Repeat:0.54[see	2]	m/z:181.9-234.0 (1.29M)
Ch.# r	n/z	Time:0min	Compound name
1	181.9	-	Dummy-GR1
2	182.0732	-	Benzophenone
3	183.0766	-	Benzophenone
4	188.1411	-	Phenanthrene-d10
5	92.1359	-	Benzophenone-d10
6	216.9145	-	HCH
7	218.9116	-	HCH
8	218.9856	-	Lock Check
9	218.9856	-	Mass Lock
10	224.9317	-	13C6-HCH
11	234.0406	-	13C12-2CB#8
G#:	2 Repeat:0.45[[sec]	m/z: 212.1-258.0 (1.22M)
Ch.#	m/z T	`ime:22min	Compound name
1	212.141	-	Fluoranthene-d1
2	235.0081	-	DDD&DDT
3	237.0052	-	DDD&DDT
4	242.9856	-	Mass Lock
5	242.9856	-	Lock Check
6	246.0003	-	DDE
7	247.0484	-	13C12-DDD&DDT
8	247.9974	-	DDE
9	258.0406	-	13C12-DDE
G#:	3 Repeat:0.25	[sec]	m/z: 252.1-269.0 (1.07M)
Ch.#	m/z T	`ime:33.5min	Compound name
1	252.0939	-	BzP
2	253.0973	-	BzP
3	264.1692	-	BzP-d12
4	268.9824	-	Mass Lock
5	268.9824	-	Lock Check

・イオンマルチプライヤ電圧:1.2kV

・モニターイオン及びグルーピング:表1-1及び表1-2
 のとおり

2.4 実験操作

同時分析対象物質は、底質試料では α -HCH, β -HCH, γ -HCH, δ -HCH,p,p'-DDT,o,p'-DDT, p,p'-DDD,o,p'-DDD,p,p'-DDE,o,p'-DDE,HCB, cis-chlordane,trans-chlordane,cis-nonachlor及び trans-nonachlorの14物質,水試料ではさらに benzophenone及びbenzo(a)pyreneを加えた16物質に設 定し,抽出,クリーンアップ条件等について検討した。

実験は、「地下水中のPOPs分析法」¹⁾(水質)および「モニタリング調査マニュアル」²⁾(底質)を参考 に、本調査での分析項目のうち、同時に分析できる項 目を考慮しながら数種類のカラムクロマトグラフィー によるクリーンアップ方法を検討した。また、環境底 質試料を用いて、高速溶媒抽出装置(ASE)による抽 出条件について検討した。

表1-1 測定質量グループリスト(高質量グループ)

G#:	1 Repeat:0.33	[sec]	m/z: 233.0-289.8 (1.24M)
Ch.#	m/z T	ime:0min	Compound name
1	233	-	Dummy-GR1
2	234.0406	-	13C12-2CB#8
3	268.9824	-	Lock Check
4	268.9824	-	Mass Lock
5	283.8102	-	HCB
6	285.8072	-	HCB
7	289.8303	-	13C6-HCB
G#:	2 Repeat:0.55	[sec]	m/z: 337.9-441.8 (1.31M)
Ch.#	m/z T	ime:20min	Compound name
1	337.9208	-	13C12-5CB#95
2	372.826	-	Chlordane
3	374.823	-	Chlordane
4	380.976	-	Lock Check
5	380.976	-	Mass Lock
6	382.8595	-	13C10-Chlordane
7	405.8428	-	13C12-7CB#170
8	406.787	-	Nonachlor
9	408.784	-	Nonachlor
10	416.8205	-	13C10-Nonachlor
11	441.8009	-	13C12-8CB#202

溶離分画								10% シ	バエチル	/エーテ	ル/ヘキ	サン			
回収率%	0-1mI	∠1-2mL	, 2-3m	L3-4mI	. 4-5mL	5-6mL	. 6−7mI	.7-8mL	8-9mL	9-10mL	10-11mL	11-12mL	12-13mL	13-14mI	. 14-15mL
Benzophenone	1	1	2	28	43	22	7	2	1	1	1	1	1	1	1
α-HCH	0	5	51	39	2	0	0	0	1	0	0	1	0	0	0
β –HCH	1	1	22	67	12	2	0	0	1	1	1	1	1	1	1
γ -HCH	1	1	33	63	10	2	0	0	1	1	1	1	1	1	1
δ –HCH	1	1	1	4	14	24	26	18	10	5	2	0	1	2	1
o,p'-DDE	3	38	46	9	0	1	0	0	0	0	0	1	0	0	0
p,p'-DDE	7	47	36	5	0	0	0	0	0	0	1	0	0	0	0
o,p'-DDD	0	3	37	55	8	1	0	0	0	0	0	0	0	0	0
p,p'-DDD	0	2	40	53	5	0	0	0	0	0	0	0	0	0	0
o,p'-DDT	3	32	52	11	0	0	0	0	0	0	0	0	0	0	0
p,p'-DDT	1	14	55	26	1	0	0	0	0	0	0	0	0	0	0
BzP	1	0	1	10	18	19	13	7	3	2	2	1	0	0	0
НСВ	16	59	20	1	2	1	0	0	1	2	0	0	2	0	1
trans-Chlordane	0	1	38	54	6	0	0	0	0	0	0	0	0	0	0
cis-Chlordane	0	4	48	36	2	0	0	0	0	0	0	0	0	0	0
trans-Nonachlor	1	19	56	22	0	0	0	0	0	0	0	0	0	0	0
cis-Nonachlor	0	0	34	57	8	0	0	0	0	0	0	0	0	0	0

表2-1 5%含水フロリジル1g(10mm φ)におけるPOPs等の溶離パターン

表2-2 5%含水シリカゲル1g(10mmφ)におけるPOPs等の溶離パターン

溶離分画							10	%ジニ	エチルコ	ニ ーテル	/ヘキサ	ン			
回収率%	0-1mL 1	-2mL	2-3mL 3	3-4mI	2 4-5mL	5-6mL	6-7mL	7-8ml	L 8-9mI	.9-10mL	10-11mL	, 11-12mL	, 12–13mL	2 13-14mI	. 14-15mL
Benzophenone	1	1	1	8	51	30	9	3	2	1	1	1	1	1	1
α-HCH	0	0	1	48	45	8	1	1	0	1	1	0	1	1	1
β –HCH	0	0	1	15	57	22	9	4	2	2	2	1	4	3	1
γ -HCH	0	0	1	8	57	27	9	4	3	3	2	1	2	2	1
δ-HCH	0	0	1	1	1	2	3	6	14	22	24	16	14	7	4
o,p'-DDE	0	0	22	52	17	1	1	0	0	0	0	0	1	0	0
p,p'-DDE	0	7	50	32	6	0	0	0	0	1	0	0	0	0	1
o,p'-DDD	0	0	1	37	44	9	2	1	0	0	0	0	0	0	0
p,p'-DDD	0	0	0	44	43	6	1	0	0	0	0	0	0	0	0
o,p'-DDT	0	0	13	57	21	1	0	0	0	1	0	0	0	0	0
p,p'-DDT	0	0	3	60	30	3	0	0	0	0	0	0	0	0	0
BzP	0	0	0	50	39	5	1	0	0	0	1	0	0	0	0
НСВ	10	70	17	1	0	1	2	1	1	1	1	1	3	1	1
trans-Chlordane	0	0	0	49	44	5	1	0	0	0	0	0	0	0	0
cis-Chlordane	0	0	0	47	42	4	1	0	0	0	0	0	0	0	0
trans-Nonachlor	0	0	1	58	32	2	0	0	0	0	0	0	0	0	0
cis-Nonachlor	0	0	0	33	51	10	2	1	0	0	0	0	0	0	0

図1 標準品のクロマトグラム

注入量:benzophenone, benzo(a)pyrene各500fg、その他各1pg

3 結果及び考察

3.1 標準品のクロマトグラム

対象物質の質量範囲が広いことから高分解能 GC/MSの測定は、低質量及び高質量グループの2回に 分けて行った(表1-1,表1-2)。測定対象物質のクロ マトグラムを図1に示したが、対象物質をすべて質量 分離することができた。

3.2 クリーンアップ法の検討

3.2.1 水試料のカラムクリーンアップ

図2-1に示す分析フローに従い検討を行った。5%含 水フロリジル1gの上下に無水硫酸ナトリウムを各 1cmの厚さで積層したカラム及び5%含水シリカゲル1 gを用いて同様に調製したカラムについて,標準品添 加による溶出分画実験を行った結果をそれぞれ表2-1 及び表2-2に示す。いずれのカラムについても∂-HCH が最も遅れて溶出し、フロリジルでは10%ジエチル エーテル/ヘキサン10mLで定量的に溶出したが、シリ カゲルでは15mLでも溶出が完了しなかった。また、

図 2-1 水質試料の分析フロー

図2-2 底質試料の分析フロー

市販の充填済ミニカートリッジカラム(LC-Florisil及 びLC-Si,いずれも充填量1gでガラス外筒)について も同様の実験を行ったところ類似した溶出パターンが 得られたが,いずれもベンゾフェノンの顕著な汚染が みとめられ,今回の目的には不適当であることがわか った。以上の結果から,水試料のクリーンアップには 5%含水フロリジル1gを用いることにした。

3.2.2 底質試料のカラムクリ ーンアップ

底質試料は図2-2に示すフロー に従い,ASEによる抽出,亜硫酸 テトラブチルアンモニウムによる 脱硫黄処理及びカラムクロマトグ ラフィーによるクリーンアップを 行う方法を検討した。シリカゲル カラムクロマトグラフィー(選択 肢A)では,Fr.1のヘキサン10~ 30mLの間でHCBが,Fr.2の25% ジエチルエーテルヘキサン0~ 50mLでその他の物質が定量的に 溶出した(表3-1)。フロリジルカ ラムクロマトグラフィーでは, Fr.3の5%ジエチルエーテル/ヘ キサン0~40mLの間でる-HCH以

外の物質が定量的に溶出したが、δ-HCHは100mLで も溶出し切らずFr.4の20%ジエチルエーテル/ヘキサ ン0~40mLまで溶出が続いた(表3-2)。δ-HCHを定 量的に回収するためにはFr.3の溶離条件で200mL程 度の溶媒が必要と考えられた。一方、硫酸シリカゲル カラムクロマトグラフィー(選択肢B)では、ヘキサ ン0~150mLですべての物質が定量的に回収され、簡

溶離分画		Fr.1	ヘキサン	(第1溶離	 [溶媒]		Fr.2	25%ジエ	チルエーラ	-ル/ヘキ+	ナン(第2	溶離溶媒)
回収率%	0-10mL	10-20mL	20-30mL	30-40mL	40-50mL	50-60mL	0-10mL	10-20mL	20-30mL	30-40mL	40-50mL	50-60mL
α -HCH	0	0	1	0	0	0	0	0	94	0	0	0
β –HCH	1	1	1	1	1	0	0	0	104	1	0	1
γ -HCH	0	0	0	1	1	1	0	1	106	1	1	0
δ –HCH	0	1	0	1	1	1	0	0	0	59	38	1
o,p'-DDE	0	0	0	0	0	0	0	0	97	0	0	0
p,p'-DDE	0	0	1	0	0	1	6	64	31	0	0	0
o,p'-DDD	0	0	0	0	0	0	0	0	97	0	0	0
p,p'-DDD	0	0	0	0	0	0	0	0	95	0	0	0
o,p'-DDT	0	0	0	0	0	0	0	0	96	0	0	0
p,p'-DDT	0	0	0	0	0	0	0	0	96	0	0	0
НСВ	1	67	30	1	1	1	1	1	1	1	1	1
trans-Chlordane	0	0	0	0	0	0	0	0	102	0	0	0
cis-Chlordane	0	0	0	0	0	0	0	0	100	0	0	0
trans-Nonachlor	0	0	0	0	0	0	0	0	100	0	0	0
cis-Nonachlor	0	0	0	0	0	0	0	0	106	0	0	0

表 3 ー 1 活性シリカゲル10 g (10mm ϕ)におけるPOP s 等の溶離パターン

溶離分画	Fr.3 5	%ジエチル:	エーテル/ヘ	、キサン(第	1溶離溶媒)	Fr.4 20	%ジエチル	エーテル/	ヘキサン(第	52溶離溶媒)
回収率%	0-20mL	20-40mL	40-60mL	60-80mL	80-100mL	0-20mL	20-40mL	40-60mL	60-80mL	80-100mL
α-HCH	56	39	0	0	1	0	0	0	0	0
β –HCH	4	96	1	1	1	0	0	1	1	1
γ -HCH	1	96	3	0	1	0	0	0	0	1
δ –HCH	0	0	1	7	37	44	15	0	1	1
o,p'-DDE	80	13	0	0	0	0	0	0	0	0
p,p'-DDE	91	1	0	0	0	0	0	0	0	0
o,p'-DDD	9	91	0	0	0	0	0	0	0	0
p,p'-DDD	19	82	0	0	0	0	0	0	0	0
o,p'-DDT	80	16	0	0	0	0	0	0	0	0
p,p'-DDT	60	39	0	0	0	0	0	0	0	0
HCB	81	6	1	1	1	1	1	1	1	1
trans-Chlordane	14	85	1	1	1	0	0	0	0	0
cis-Chlordane	36	66	0	1	0	0	0	0	0	0
trans-Nonachlor	90	4	0	1	0	0	0	0	0	0
cis-Nonachlor	14	86	0	0	0	0	0	0	0	0

表 3 - 2 活性フロリジル10 g (10mm ϕ)におけるPOP s 等の溶離パターン

表 3 - 3 硫酸シリカゲルカラムクロマトグラフィー(10mm φ)におけるPOP s 等の 溶離パターン 及び硫酸洗浄の回収率

티바귝 0/	44%硫酸シ	リカゲル (4.5g)	カラムのヘキ	サン溶離分画	硫酸洗浄
凹収率%	0-150mL	150-200mL	200-250mL	250-300mL	処理
α-HCH	98	0	0	0	102
β –HCH	103	0	0	0	100
γ -HCH	99	1	0	0	101
δ-HCH	95	5	1	0	97
o,p'-DDE	104	0	0	0	103
p,p'-DDE	99	0	0	0	104
o,p'-DDD	89	0	0	0	91
p,p'-DDD	87	0	0	0	99
o,p'-DDT	91	0	0	0	97
p,p'-DDT	124	0	0	0	105
HCB	98	0	0	0	97
trans-Chlordane	109	0	0	0	102
cis-Chlordane	102	0	0	0	101
trans-Nonachlor	104	0	0	0	102
cis-Nonachlor	107	0	0	0	98

便な処理が可能であった(表3-3)。なお,硫酸シリカ ゲルカラムへの過負荷を避けるため,選択肢Bでは事 前に硫酸洗浄を行なった。

以上の結果から選択肢Aの場合にはBの場合と比較 して、2回のカラムクロマト操作を行なうことになる ためクリーンアップ効果が期待できる反面、処理操作 及び測定に倍以上の労力を要することから、クリーン アップ法として選択肢Bを採用することにした。

3.3 ASE抽出方法の検討

海底土試料を用いて,ASE抽出における抽出溶媒の 影響を検討し,その結果を表4に示した。ASE抽出溶 媒はアセトン→トルエン連続抽出及びトルエン単独の 3種類とし,同一試料について平成16年度に環境省が 行った調査結果³⁾と比較した。アセトン→トルエンで 抽出した場合,すべての物質でほとんどがアセトンに より抽出され若干量がトルエンの分画に残存したが,

	濃度	換算 pg/g 乾土	参考		
		連続抽出		トルエン	H16年度環境省調査結果*)
	アセトン	→トルエン	合計	単独抽出	(超音波+ソックスレー法)
α -HCH	53	12	65	52	73
β –HCH	77	15	92	76	110
γ -HCH	8	-2	6	15	16
δ –HCH	12	2	14	11	15
o,p'-DDE	18	1	20	4	15
p,p'-DDE	282	13	294	47	280
o,p'-DDD	187	2	190	11	56
p,p'-DDD	230	15	245	42	260
o,p'-DDT	176	0	176	7	160
p,p'-DDT	1463	4	1468	28	640
HCB	48	10	58	31	56
trans-Chlordane	26	1	26	10	29
cis-Chlordane	27	0	26	8	58
trans-Nonachlor	22	1	23	7	27
cis-Nonachlor	18	1	18	5	18

表4 H16年度水島沖底質のASE抽出分析結果

*)分析は環境省指定民間分析機関が担当し、抽出方法は超音波(アセトン20分)及び ソックスレー(10%アセトン含有トルエン18時間)抽出法が採用されている。

図3-1 河川水試料のクロマトグラム

図3-2 海底土試料のクロマトグラム

	河川水資料	海底土資料
抽出法	溶媒抽出ヘキサン	ASEアセトン
クリーンアップ	5%含水フロリジル	44%硫酸シリカゲル
α -HCH-13C6	84	79
β -HCH-13C6	94	77
γ -HCH-13C6	81	79
δ -HCH-13C6	101	84
o,p'-DDE-13C12	103	112
p,p'-DDE-13C12	113	114
o,p'-DDD-13C12	120	84
p,p'-DDD-13C12	113	86
o,p'-DDT-13C12	125	80
p,p'-DDT-13C12	125	91
HCB-13C6	84	74
t-Chlordane-13C10	102	94
t-Nonachlor-13C10	110	88
c-Nonachlor-13C10	111	93
Benzophenon-d10	91	—
BzP-d12	80	_

表5 環境試料分析におけるクリーンアップスパイクの回収率(%)

両者を合計すると環境省報告書の分析結果にほぼ 一致した。トルエンのみで抽出を行った場合には 分析値は低く,十分な抽出効率が得られなかった。 アセトン→トルエンで抽出した場合,トルエンに 抽出された部分は最初のアセトンでの抽出回数を 増やすことによりアセトンのみで抽出可能である と考えられること,ならびにトルエンを使用しな い場合には濃縮操作がより簡便になることを考慮 し,ASE抽出はアセトンのみを使用し抽出回数を2 回から3回に増やすことにした。

3.4 実試料への適用

以上の検討結果を適用し,環境試料を分析して 得られたクロマトグラム及びクリーンアップスパ イクの回収率を図3-1,図3-2及び表5に示す。河川 水試料,海底土試料ともに,クロマトグラム上で trans-chlordaneの左側に未知ピークが迫っていた が,ほぼ分離できており定量には問題はなかった。 クリーンアップスパイクの回収率は全体で74~ 125%であった。回収率が一部の物質で100%を超 えた原因は、マトリックス効果の影響であると考 えられるが、本分析法では目的物質の安定同位体 標準品をクリーンアップスパイクとしているので,分 析操作上の損失やマトリックス効果の分析値への影響 は補正できた。

4 まとめ

水質試料,底質試料中のPOPs等を簡便に同時分析 するため,抽出方法,クリーンアップ方法などについ て検討を行い,以下に示す結果を得た。

- 1) HRGC/HRMS測定は、低質量及び高質量グループの2回に分けて行う必要がある。
- 水質試料では、5%含水フロリジル1gによるカラ ムクロマトグラフィーにより、簡便で良好なクリー ンアップ効果が得られた。なお、市販の充填済みミ ニカートリッジカラムには、ベンゾフェノンの汚染 が認められた。
- 3) 底質試料のASE抽出では、アセトン100℃5分間で

3回抽出することにより十分な抽出効果が得られた。

4) 底質試料のASE抽出液を, 脱硫黄処理・硫酸洗 浄・硫酸シリカゲルカラムクロマトグラフィーの組 み合わせでクリーンアップすることにより, 簡便な 前処理が可能になった。

文 献

- 1)環境省環境管理局水環境部編:埋設農薬調査・掘 削等暫定マニュアル,平成17年3月,2005
- 2)環境省環境保健部環境安全課編:モニタリング調 査マニュアル,2003
- 3)環境省環境保健部環境安全課編:平成17年度版化
 学物質環境実態調査-化学物質と環境-,平成18年3
 月,2006