【調査研究】

連続測定における空間γ線線量率の上昇について

Increase of y-ray Dose Rate in Continuous Monitoring

小川 登, 片岡敏夫 (監視情報室), 道広憲秀* *放射能科 Noboru OGAWA, Toshio KATAOKA, Kenshu MICHIHIRO

要 旨

岡山県人形峠では、2004年12月5日~6日にかけて降雨中に空間γ線線量率が上昇し、5日22時に全局で空間γ線線 量率の数値が過去最高値を示した。近隣府県(島根県・鳥取県・京都府・福井県)でも同様に高い値が観測されてお り、γ線スペクトルからは Rn-222の子孫核種である天然の放射性核種 Bi-214及び Pb-214のピークの出現が確認され たことから、今回の上昇は自然要因によるものであると考えられた。

今回,過去の事例も含めて空間γ線線量率上昇と気象要素との関係について解析を行った。METEX((独)国立環境 研究所地球環境研究センターが開発したシステム)を利用して流跡線解析を行うことにより,上昇する事例はいくつか のパターンに分類でき,それぞれのパターンで空間γ線線量率と気圧傾度との間には正の相関が認められた。

[キーワード:空間 γ 線線量率,降雨, γ 線スペクトル,流跡線解析,気圧傾度,気象]

1 はじめに

岡山県では1979年から核燃料サイクル開発機構人形 峠環境技術センター(以下,サイクル機構と略す。) 周辺の環境放射線等の連続測定を実施しており,観測 局舎3局を設置している。(観測局舎の位置は図1に 示す)

2004年12月5日14時~6日1時にかけて空間γ線線

量率が上昇し,22時に全局で空間 γ 線線量率の数値が 過去最高値を示した。

サイクル機構が設置している3局でも同様に高い数 値が観測されたが,排気ダストモニタの数値に変動は なく,放射性物質の放出に係る作業も実施していない との報告があった。

また,近隣府県(島根県・鳥取県・京都府・福井

図1 観測局舎の配置図

県)への問い合わせを実施したところ,同様に高い値 が観測されていることが確認できた。

MCA (マルチチャンネルアナライザ)で同時に測 定したγ線スペクトルからは Rn-222の子孫核種であ る天然の放射性核種 Bi-214及び Pb-214のピークの出 現が確認され,今回の上昇は自然要因¹⁾²⁾によるもので あると考えられた。そこで,今回過去の事例も含めて 空間γ線線量率が上昇した事例について気象要素との 関係を調べた。

2 測定方法

空間 γ 線線量率の測定には富士電機(㈱製の2" $\phi \times$ 2"NaI (TI) 検出器を使用し、3局のうち人形峠局 と赤和瀬局には MCA を付帯設置し γ 線スペクトルも 併せて測定している。その他の項目としては大気浮遊 塵中の全 α 放射能濃度,大気中のふっ素濃度を測定し ており、気象項目としては、風向風速、降水量、降水 時間、気温、湿度等を測定しているが、赤和瀬局では 日射量、放射収支量、気圧、積雪深、雷も併せて測定 している。

3 測定結果

3.1 空間 y 線線量率の上昇

2004年12月5日22時の数値は、人形峠局:0.174、

赤和瀬局:0.150, 天王局:0.154μGy/h (通常の約3 倍の数値)であった。また,このときのベースライン からの上昇分は,人形峠局:0.111,赤和瀬局: 0.104,天王局:0.101μGy/hであった。(ここでいう ベースラインとは,γ線線量率が上昇する前後の降雨 のない状態で数値が安定した状態をいう。)

図2に12月4日から5日にかけての3局の空間γ線 線量率と降水量の推移を示す。

3. 2 気象条件の違いと空間γ線線量率の上昇

降雨(雪)により空間γ線線量率が上昇するが,気 象条件によって上昇の度合いは異なる。今回の数値上 昇についても12月4日と5日では以下のような違いが 見られた。

両日ともに降水量が観測されたが、12月4日は空間 γ 線線量率があまり上昇しなかったのに比べて、12月 5日は大きく上昇した。NaI 検出器で測定した γ 線ス ペクトルを比較した場合、Rn-222の子孫核種である 天然の放射性核種 Bi-214及び Pb-214のカウント量に も違いが見られた(図3-1、図3-2)。なお、図 3-3には降雨がなかった場合の γ 線スペクトルを対 象として示した。

12月4日から5日にかけては、例年になく遅い時期 に発生した台風27号が台湾に接近し、その近くで発生 した低気圧が日本列島を通過するとともに急速に発達

図 3 - 1 Nal で測定した y 線スペクトル(人形峠局) 2004年12月 4 日 23:30

図 3 - 2 Nal で測定したγ線スペクトル(人形峠局) 2004年12月5日 22:00

図3-3 Nal で測定したγ線スペクトル(人形峠局) 2004年12月3日 22:00(降雨なし)

図 4 - 1 地上天気図(2004年12月 4 日21時)

図4-3 気象衛星画像(2004年12月4日21時)

し、その後、強い冬型の気圧配置となった。

12月4日は上記の低気圧が発達しながら東北東に進み、それに伴った降水量が観測された。(岡山県南部 でも降雨あり)(図4-1,図4-3)

12月5日は西高東低の気圧配置により日本海で発生 し発達した雲が南下するのに伴い降水量が観測され た。(岡山県南部では降雨なし)(図4-2,図4-4)

4 考 察

大陸性気団を起源とする雨の短寿命 Rn 子孫核種濃 度は海洋性気団のそれよりも高いことが島根県の吉 岡³⁰により報告されている。この報告を参考にすると 12月5日は大陸性気団を起源とする降雨,12月4日は 海洋性気団を起源とする降雨と考えられ,5日の方が 空間 y 線線量率が上昇したと推測された。

図4-2 地上天気図(2004年12月5日21時)

図4-4 気象衛星画像(2004年12月5日21時)

ここで空間γ線線量率が上昇した事例の解析を以下 のとおり行った。

4.1 天気図から見た気圧配置との関係

2005年1月までの事例について,空間γ線線量率の ベースラインからの上昇分が高い順に上位20位までを 調べた結果,夏期に上昇した1事例を除き,ほぼ冬季 (11月と3月を含む)に西高東低の冬型の気圧配置と なり大陸性気団を起源とする降雨(雪)があったと考 えられる場合に上昇していることがわかった。そこで 西高東低の冬型の気圧配置に限定した上位20事例につ いて以下の解析を行った。

4. 2 500hPaの平均風速との関係

500hPa は高度約5400m で対流圏のほぼ中間に位置 し,500hPa の天気図は大気の中層を代表する天気図 である。この天気図を解析した結果,空間 γ線線量率

年 月 日			時	米 子		6 地点	γ線量率上昇分	気圧傾度	パターン
				風向	風速(kt)	平均風速(kt)	3 局平均(µGy/h)	(hPa/km)	分類
2004	12	5	22	西	65	63	0.105	0.186	А
2005	1	5	2	西北西	65	51	0.084	0.144	A-B
2002	12	17	6	北西	80	61	0.078	0.154	А
1989	1	27	21	西北西	70	67	0.075	0.205	C
1981	2	4	2	西	85	50	0.065	0.150	С
1993	1	28	9	北西	75	65	0.062	0.150	С
2005	1	21	5	北西	70	58	0.061	0.155	В
1996	12	1	20	北西	60	41	0.056	0.132	С
1981	3	15	17	西北西	75	68	0.056	0.222	В
2005	1	30	2	西南西	85	68	0.054	0.142	С
1994	2	10	1	北西	30	48	0.053	0.192	В
1993	2	7	14	西	65	63	0.051	0.179	D
1989	11	1	14	北北西	35	37	0.050	0.110	E
1983	11	13	24	西北西	45	46	0.049	0.098	С
1984	12	2	16	北西	90	49	0.048	0.139	C
1990	12	11	22	北西	60	56	0.048	0.163	В
2003	12	18	6	西	70	65	0.047	0.133	А
1993	2	14	2	西北西	60	58	0.045	0.162	А
1987	1	24	17	西北西	55	53	0.045	0.119	В
1997	1	21	16	北西	80	53	0.044	0.218	B-C

表1 空間 y 線線量率上昇分と500hPa の平均風速,気圧傾度等の関係

が上昇した場合,ほとんどの事例で日本列島付近がト ラフ(偏西風帯が赤道側にへこんだ状態)となってい ることが確認できた。そこで,米子を中心とした東西

図6 空間 γ 線線量率と気圧傾度の関係

方向のほぼ同じ高度にある6地点の風速を平均して平 均風速を算出し、大気の移送量と空間γ線線量率上昇 分との関係を調べた。(表1,図5)

明らかな相関は認められなかったが,平均風速が強 いときに空間γ線線量率が上昇する場合があることが わかった。

4.3 気圧傾度との関係

日本列島をはさんだ低気圧中心と高気圧中心との気 圧の差を中心間の距離で割って気圧傾度を求め,空間 γ線線量率上昇分との関係を調べた。(表1,図6)

相関図からは、気圧傾度が大きくなるに従って空間 γ線線量率が上昇する場合とそれほど上昇しない場合 があることが示唆されたため、事例をいくつかのパ ターンに分類することを試みた。

4.4 METEX を利用した流跡線解析によるパター ン分類

METEX は(独) 国立環境研究所地球環境研究セン ターが開発したシステムであり,アメリカ環境予測セ ンター(NCEP)のデータを用い,流跡線や風向風速 ベクトル図の作成がホームページから可能となってい る。

2004年12月5日21時(500hPa)

図9 500hPaにおける風向風速ベクトル図の例

この機能を利用して流跡線を作成した結果,主として3つのパターンに分類できたので,そのパターンご とに相関図を作成した。流跡線については氷晶が落下 を始める高度を3000mと想定して96時間前まで遡っ て作成した。高度を3000mと想定したのは観測局舎 が標高約700mにあること、付近の中国山地の山が標 高約1000m程度であること、降雨をもたらした雲が 対流性の雲であること等を考慮したことによる。なお 流跡線解析については福島県原子力センターや宮城県 原子力センターで同様な解析を行った事例がある⁴⁾⁵⁾。

パターン分類の結果は表1のパターン分類の欄のと おりであり、実際の解析事例を図7に示した。また、 パターン分類した後の相関図は図8のとおりであり、 事例数は少ないがいずれも正の相関が認められた。

パターンAは中央アジアから長距離移動するパター ンでカスピ海あたりからバイカル湖を経由して岡山県 に到達する。最も空間 γ 線線量率が上昇するパターン であった。

パターンBはシベリアから長距離移動するパターン でシベリアからバイカル湖付近を経由して岡山県に到 達する。最も空間 γ 線線量率が上昇しないパターンで あり,気圧傾度の大小には一番影響されなかった。

パターンCはバイカル湖以東から短距離移動するパ ターンでバイカル湖よりも東の比較的近い場所から岡 山県に到達する。パターンAの次に空間 γ 線線量率が 上昇するパターンであった。

また、その他のパターンは以下のとおりであった。

- A-B:ロシア西部からシベリアを経由して長距離移 動する。
- B-C:シベリアからバイカル湖付近を経由するが沿 海州付近で複雑な動きを経る。
- D:中央アジアから中国中部を経て長距離移動する。
- E:日本に非常に近い場所(朝鮮半島付近)から複雑 な動きを経る。

4.5 風向風速ベクトル図による解析

風向風速ベクトル図は6時間ごとに作成可能なた め,500hPaにおいて直近の時刻で作成し,中層大気 における風の流れを解析した。

パターンAでは、中央アジアからの風の流れが途中 でとぎれることなく比較的強い状態のまま日本まで達 している事例が多いことがわかった。(パターンAの 代表例を図9に示す)

パターンBでは,シベリア付近からの風の流れが途 中までは比較的弱く,中国東北部付近から強まって日 本まで達している事例が多いことがわかった。 パターンCでは,ABC3つのパターンのうちで風 が一番弱く,遼東半島や朝鮮半島など日本に近づいて から風が強まっている事例が多いことがわかった。ま た,いずれも海洋性の風の混入はないことがわかっ た。

特に2004年12月5日は、パターンAであり、風向風 速ベクトル図からは図9に示した状態が数時間にわ たって継続したことが確認でき、また降雨も数時間続 いたことから、そのことが比較的長い期間空間γ線線 量率が上昇する要因となったと考えられた。

5. まとめ

空間 γ 線線量率が上昇した事例を METEX を利用し た流跡線解析を行うことにより、上昇する事例は主に 3つのパターンに分類でき、それぞれのパターンで空 間 γ 線線量率と気圧傾度との間には正の相関が認めら れた。

2004年12月5日の事例は最も上昇しやすいパターン であり、流跡線作成の条件として想定した高度3000m の空気塊は、この日カスピ海南方からバイカル湖を経 て日本に到達していることがわかった。この経路を通 過している間に大陸起源のRn-222を多く含んだ空気 塊ができたと考えられた。また、500hPaにおける風 向風速ベクトル図からは、風の流れが途中でとぎれる ことなく比較的強い状態のまま日本まで達しているこ とがわかり、その状態が数時間にわたって継続したこ とが比較的長い期間空間γ線線量率が上昇する要因と なったと考えられた。

謝 辞

今回の報告をまとめるにあたり貴重なご助言をいた だいた岡山大学理学部の塚本修教授に深謝いたしま す。

文 献

- H. Hayakawa, J. Nucl. Sci. Technol. 22 (4), 292–300 (1985)
- 2) K. Fujitaka et al., Radiat. Prot. Dosim. 45 (1/4), 333– 336 (1992)
- 3) 吉岡勝廣,大気中のラドン族と環境放射能Ⅲ
 1995年10月 日本原子力学会発行 97-99

- 4) 福島原子力センター,福島県原子力センター平 5) 木立博,石川陽一,佐々木俊行,宮城県原子力 成14年度業務年報, 61-67 (2003)
 - センター年報, 第20巻, 10-17 (2002)