§ 2 解 誽

濃縮

0.1ml/ナン

内標添加

硫酸洗浄

GC-HRMS

0.1ml/ナン

内標添加

硫酸洗浄

GC-HRMS

0.1ml/ナン

内標添加

GC-HRMS

【分析法】 [分析法フローチャート] ①水質(固相ディスク法) 試料 5L 固相抽出 ソックスレー抽出 GPC 固相シリカゲル サロケート添加 C18-FF固相ディスク トルエン6hr 1g: ヘキサン 6ml (90mm) ②底質(アセトン抽出・室温アルカリ分解・GPC法) 試料 20g 抽 出 濃縮 アルカリ分解 抽出·脱水 エタノール40ml添加 水50ml添加後 サロケート添加 アセトン50mlx2 1N KOH/EtOH25ml 約35mlまで濃縮 室温1hr ヘキサン 50mlx2 水洗・脱水・濃縮 GPCクロマトグラフィ-固相シリカゲル 5%NaCl 30,20ml CLNpak PAE-2000 1g:ヘキサン 6ml (溶離液:5%シクロヘキサンアセトン) (PCBs: 14.5-16.25min, PCNs: 16-18min) ③底質(ソックスレー抽出・室温アルカリ分解・GPC法) 乾泥 10g ソックスレー抽出 濃縮 アルカリ分解 抽出·脱水 サロゲート添加 トルエン160ml,16hr /ナン0.5ml 0.5N KOH/EtOH50ml 水50ml添加後 室温1hr ヘキサン 50mlx2 水洗・脱水・濃縮 GPCクロマトグラフィ 固相シリカゲル 5%NaCl 30,20ml CLNpak PAE-2000 1g: ヘキサン 6ml (溶離液:5%シクロヘキサンアセトン) (PCBs: 14.5-16.25min, PCNs: 16-18min)

④生物(ヘキサン抽出・室温アルカリ分解・GPC法) 試料 20g 抽 出 濃縮 アルカリ分解 抽出・脱水 硫酸洗浄 ヘキサン40mlx3 エタノール5ml添加 0.5N KOH/EtOH50ml Na_2SO_4 40g 水50ml添加後 サロゲート添加 約2mlまで濃縮 ヘキサン 50mlx2 室温1hr 水洗・脱水・濃縮 GPCクロマトグラフィ 固相フロリジル GC-HRMS 5%NaCl 30,20ml CLNpak PAE-2000 1g:ヘキサン 5ml+ 0.1ml/ナン (溶離液:5%シクロヘキサンアセトン) 5%エーテルヘキサン8ml 内標添加 (PCBs: 14.5-16.25min, PCNs: 16-18min)

図 2-1 PCNs の検量線 (サロゲート物質濃度: 10pg/ µ l)

図 2-2 PCNs 及び PCBs の検量線(サロゲート物質濃度: 5 pg/ µ l)

HpCB(#180C)の検量線(50fg~10pg)

OcCB(#199)の検量線(50fg~10pg)

図 2-3 PCBs の検量線(サロゲート物質濃度: 5 pg/ µ l)

図 2-4 PCBs の検量線(サロゲート物質濃度: 5 pg/μl)

2. 低濃度添加回収実験

PCNs 及び PCBs の低濃度回収実験の結果(内標法を用いた絶対回収率)を、表 25~30 に示した。 なお、PCNs 及び PCBs は、共通底質中に多量に含まれていたため、PCBs 含有量が低く、強熱減 量が比較的高い海底土(湿泥試料)及び農業用水路河底土(乾泥試料)を使用して添加回収実験を実施した。

また、魚介類の PCBs については簡易な分析が可能な室温アルカリ分解抽出法(1N、15 時間)に ついても検討し良好な回収率(表 30)を得たが、PCNs(表 29)は、アルカリ分解時に脱塩素する ため、室温アルカリ分解抽出法は適用できない。

底質中には PCNs 及び PCBs が、生物試料中には PCBs が比較的高濃度に存在するため、高濃度 に存在する異性体の添加回収率は変動が大きくなり、場合によっては回収率がマイナスになる例があった。

サロゲート法による相対回収率、添加対象試料に含まれる異性体濃度、ブランク試料の定量値については、表 13~24(分析法、注 61)に示した。

<u>武料</u>	精制	<u>~~~~~</u> 型水	河川	水	海水		
分析方法	固相扣	曲出法	固相扣	由出法	固相抽出法		
試料量	5	L	5	L	5L		
添加量(ng)	1.	0	0.2	2	0.2	2	
測定回数	-	7	7	1	7		
	回収率	変動率	回収率	変動率	回収率	変動率	
<u>物質名</u>	%	%	%	%	%	%	
2-MoCN-d7	59.7	10.6	61.4	6.3	62.0	13.6	
13C-1,3,5,7-TeCN	78.0	7.6	83.4	6.1	84.3	5.5	
13C-1,2,3,4-TeCN	83.8	5.9	88.9	2.2	86.3	5.5	
13C-1,2,3,5,7-PeCN	90.1	8.1	97.7	6.9	94.9	9.9	
13C-1,2,3,5,6,7-HxCN	88.5	3.6	75.9	5.4	75.2	11.9	
13C-1,2,3,4,5,7-HxCN	88.6	4.3	76.1	5.9	77.3	9.6	
13C-1,2,3,4,5,6,7-Hp	94.9	3.0	69.8	13.4	67.0	16.5	
13C-OcCN	100.5	7.6	76.1	9.1	68.3	18.1	
1-MoCN	61.0	10.7	55.9	5.0	62.5	17.6	
2-MoCN	59.2	9.6	73.6	4.1	75.5	11.7	
1,4–DiCN	69.4	8.1	65.6	5.6	76.5	8.8	
1,5–DiCN	66.7	10.3	64.2	6.7	74.0	13.1	
2,7–DiCN	70.4	8.4	67.1	5.5	78.2	3.2	
1,2-DiCN	70.5	7.6	68.4	6.2	77.6	10.0	
2,3-DiCN	74.1	7.1	70.0	4.7	79.4	8.9	
1,8–DiCN	77.1	6.4	73.6	5.6	84.3	8.0	
1,2,3-TrCN	81.6	5.1	81.1	5.9	88.9	5.4	
1,2,3,5/-TeCN	83.8	5.0	84.2	4.3	86.5	6.5	
1,2,3,4-TeCN	83.9	5.2	81.8	5.6	89.6	6.5	
2,3,6,7-TeCN	90.1	1.8	87.6	5.4	90.7	8.7	
1,4,5,8-TeCN	92.0	3.4	87.6	5.7	96.6	6.3	
1,2,3,8-TeCN	93.9	5.3	83.4	8.8	95.4	7.1	
1,2,3,5,7-PeCN	91.1	5.2	80.1	10.8	91.0	8.9	
1,2,3,4,6-PeCN	94.0	7.1	84.0	11.9	84.9	11.6	
1,2,3,6,7-PeCN	96.5	4.6	84.7	8.5	89.1	7.5	
1,2,3,5,8-PeCN	92.6	7.2	83.6	13.7	91.0	6.1	
1,2,3,4,5-PeCN	101.3	13.5	102.8	12.3	92.7	13.5	
1,2,3,5,6,7/-HxCN	90.1	4.3	68.3	5.4	76.8	12.1	
1,2,3,5,6,8-HxCN	92.8	3.8	70.6	7.3	77.7	10.9	
1,2,3,5,7,8-HxCN	94.8	5.3	72.3	6.4	76.8	9.5	
1,2,4,5,7,8/-HxCN	92.4	4.7	72.6	6.6	83.1	9.1	
1,2,3,4,5,6-HxCN	93.5	4.1	72.8	6.1	77.9	10.8	
1,2,3,6,7,8-HxCN	97.6	4.9	74.4	6.6	80.2	7.9	
1,2,3,4,5,6,7-HpCN	97.6	4.3	61.9	11.0	66.2	15.8	
OcCN	100.7	4.4	66.6	11.3	64.3	16.6	
注1:回収率は、内標法	による絶対	回収率(/	記号のつい	た物質は、	他の異性体	と重なる)	

表25 PCNs水質試料の低濃度回収実験結果

注1:回収率は、内標法による絶対回収率(/記号のついた物質は、他の異性体と重なる 2:サロゲート物質の添加量は、目的物質と同濃度である。GPC処理は省略した。

試料	精製水		河川	水	海水		
分析方法	固相扣	由出法	固相扣	由出法	固相抽出法		
試料量	5	L	5	L	5L		
添加 量(ng)	1.0		0.2	2	0.2		
測定回数	7		7	1	7		
	回収率	変動率	回収率	変動率	回収率	変動率	
<u>物質名</u>	%	%	%	%	%	%	
13C-MoCB(#3)	65.3	8.4	75.4	5.2	71.2	5.6	
13C-DiCB(#15)	82.9	4.6	88.7	3.1	91.3	4.0	
13C-TrCB(#31)	86.2	6.7	91.9	3.4	90.4	3.6	
13C-TeCB(#52)	82.1	4.9	87.6	4.4	84.6	5.7	
13C-TeCB(#77C)	94.3	3.4	97.6	4.5	100.1	5.5	
13C-PeCB(#118C)	91.3	4.6	88.0	4.6	88.0	4.0	
13C-PeCB(#114C)	91.0	4.7	87.6	5.1	87.5	4.8	
13C-PeCB(#105C)	90.6	2.8	92.9	6.0	90.0	5.4	
13C-PeCB(#126C)	94.2	3.5	90.1	6.7	88.6	5.2	
13C-HxCB(#153)	88.2	7.3	84.7	4.9	80.8	8.4	
13C-HxCB(#167C)	88.7	9.8	84.7	5.8	81.2	11.8	
13C-HxCB(#156C)	89.1	9.8	77.4	5.6	76.7	7.9	
13C-HxCB(#157C)	93.5	8.2	89.3	3.8	87.2	8.4	
13C-HxCB(#169C)	88.7	6.3	75.2	6.4	73.8	10.4	
13C-HpCB(#180C)	80.9	7.8	71.6	7.6	75.5	11.3	
13C-HpCB(#189C)	88.5	6.8	59.1	8.2	71.2	10.2	
13C-OcCB(#194)	80.0	5.4	68.3	12.5	65.2	14.7	
13C-NoCB(#206)	95.4	6.0	75.5	7.1	79.2	18.3	
13C-DeCB(#209)	67.3	8.3	53.9	9.1	55.0	22.0	
MoCB(#1)	60.4	7.5	60.8	5.0	60.9	14.1	
MoCB(#3)	67.9	6.9	65.0	4.7	69.9	8.1	
DiCB(#4/#10)	68.9	5.7	68.0	3.3	66.9	11.1	
DiCB(#8)	75.1	5.5	73.5	3.1	69.4	3.9	
DiCB(#15)	85.4	3.6	75.6	3.5	86.7	4.9	
TrCB(#19)	76.8	5.9	67.7	5.3	74.9	3.8	
TrCB(#18)	84.2	7.8	79.0	7.1	82.5	7.6	
TrCB(#28)	85.5	2.2	76.8	9.6	76.0	7.1	
TrCB(#33)	90.4	2.6	82.0	3.4	86.3	6.2	
TrCB(#22)	88.0	3.7	81.5	4.6	88.2	5.9	
TrCB(#37)	94.9	2.8	89.2	8.0	93.0	4.5	
TeCB(#54)	75.6	4.7	74.9	5.6	75.1	7.8	
TeCB(#52)	82.9	5.5	72.2	3.1	83.0	5.5	
TeCB(#49)	82.5	5.1	75.5	7.5	86.4	10.1	
TeCB(#44)	86.1	5.1	82.8	4.7	85.3	10.0	
TeCB(#74)	89.6	4.7	82.6	4.0	90.2	7.9	
TeCB(#70)	89.2	5.0	84.0	4.6	90.7	10.9	
TeCB(#81C)	94.9	2.6	82.5	6.2	92.9	7.3	
TeCB(#77C)	98.4	5.5	88.6	7.2	96.2	7.2	

表26-1 PCBs水質試料の低濃度回収実験結果

注1:回収率は、内標法による絶対回収率(/記号のついた物質は、他の異性体と重なる) 2:サロゲート物質の添加量は、目的物質と同濃度である。GPC処理は省略した。

	精製水		河川	水	海水		
分析方法	固相扣	由出法	固相拍	由出法	固相抽出法		
試料量	5L		51	5L		_	
添加量(ng)	1.0		0.2	2	0.2		
測定回数	7		7		7		
11 mm F	回収率	変動率	回収率	変動率	回収率	変動率	
<u>物質名</u>	%	%	%	%	%	%	
PeCB(#104)	78.3	3.5	74.1	7.3	74.3	5.5	
PeCB(#95)	86.0	6.0	78.0	2.4	85.7	8.4	
PeCB(#101)	87.7	3.3	76.9	7.4	90.9	7.6	
PeCB(#99)	88.3	7.0	84.2	9.3	87.2	10.9	
PeCB(#119)	89.4	4.3	79.1	6.0	89.5	9.8	
PeCB(#87)	91.7	3.8	77.0	2.5	88.5	4.7	
PeCB(#110)	90.0	5.6	81.7	6.5	90.0	7.4	
PeCB(#123C)	92.6	3.9	83.3	8.0	89.7	6.3	
PeCB(#118C)	91.7	5.0	82.5	9.2	90.8	7.0	
PeCB(#114C)	94.2	3.9	90.1	6.4	88.7	7.8	
PeCB(#105C)	95.3	4.1	87.3	7.0	84.5	6.9	
PeCB(#126C)	95.3	5.5	82.5	10.2	83.6	4.4	
HxCB(#155)	69.2	4.6	66.2	5.7	72.3	16.1	
HxCB(#151)	87.9	7.5	77.4	12.3	73.9	11.3	
HxCB(#149)	88.5	8.4	69.8	8.6	75.5	9.9	
HxCB(#153/168)	90.8	5.4	73.2	8.4	77.6	10.3	
HxCB(#158/138)	92.3	5.5	71.3	8.5	80.4	8.3	
HxCB(#128)	100.8	7.3	89.9	8.9	78.2	13.3	
HxCB(#167C)	87.0	11.4	68.0	9.8	81.9	15.2	
HxCB(#156C)	95.2	5.9	71.1	11.0	75.7	12.4	
HxCB(#157C)	95.7	10.6	81.0	4.9	89.0	13.9	
HxCB(#169C)	97.1	4.5	67.1	10.1	72.8	7.6	
HpCB(#188)	76.7	7.2	60.1	10.5	65.3	17.8	
HpCB(#178)	83.7	4.7	63.8	17.0	64.4	13.6	
HpCB(#187)	82.5	6.2	68.7	11.0	80.7	18.3	
HpCB(#183)	82.7	8.0	61.7	7.1	69.2	21.5	
HpCB(#177)	80.8	6.1	57.5	9.4	69.5	17.5	
HpCB(#171)	84.4	5.1	67.3	15.1	70.6	17.6	
HpCB(#180C)	82.5	6.8	58.7	9.3	71.1	18.7	
HpCB(#191)	80.6	6.1	64.6	10.4	72.4	16.6	
HpCB(#170C)	83.0	3.7	59.3	11.1	69.2	9.0	
HpCB(#189C)	88.9	9.7	54.0	8.4	73.8	16.2	
OcCB(#202)	83.1	2.5	56.9	8.4	65.8	15.9	
OcCB(#201)	79.4	3.8	60.0	10.5	65.0	21.2	
OcCB(#199)	87.7	3.6	59.2	11.8	71.7	16.7	
OcCB(#194)	85.9	5.2	61.8	15.4	62.2	12.8	
OcCB(#205)	81.0	9.1	67.0	15.5	61.3	17.6	
NoCB(#208)	79.3	5.1	53.6	3.6	59.2	16.3	
NoCB(#206)	98.1	5.9	69.0	5.0	79.9	18.0	
DeCB(#209)	71 0	8.5	52.9	116	56 1	20.7	

表26-2 PCBs水質試料の低濃度回収実験結果

注1:回収率は、内標法による絶対回収率(/記号のついた物質は、他の異性体と重なる) 2:サロゲート物質の添加量は、目的物質と同濃度である。GPC処理は省略した。

		底質	-		底質			
分析方法	ア・	セトン抽出	法	ソック	フスレー抽	出法		
試料量		10g-dry			10g-dry			
添加量(ng)		0.2			0.2			
測定回数		7			7			
	存在量	回収率	変動率	存在量	回収率	変動率		
<u>物質名</u>	%	%	%	%	%	%		
2-MoCN-d7	28.2	35.4	17.3	56.4	61.7	9.0		
13C-1,3,5,7-TeCN	70.5	68.2	7.7	65.0	68.7	6.0		
13C-1,2,3,4-TeCN	78.6	76.9	10.3	69.3	70.4	9.2		
13C-1,2,3,5,7-PeCN	93.1	92.7	11.6	91.0	93.0	10.0		
13C-1,2,3,5,6,7-HxCN	91.1	85.4	15.2	80.5	80.4	18.9		
13C-1,2,3,4,5,7-HxCN	89.6	83.0	15.3	80.7	79.8	8.1		
13C-1,2,3,4,5,6,7-Hp	84.8	87.6	13.9	77.2	81.1	9.7		
13C-OcCN	46.6	63.4	15.0	71.4	71.2	6.2		
1-MoCN	2.2	35.5	24.6	21.9	59.9	26.5		
2-MoCN	6.5	36.6	28.8	77.1	74.5	31.4		
1,4–DiCN	4.3	48.9	9.8	18.8	71.0	13.0		
1,5–DiCN	3.7	45.8	17.5	9.0	67.0	9.2		
2,7–DiCN	1.3	55.3	11.9	11.9	73.7	9.5		
1,2-DiCN	2.6	54.0	12.6	8.7	71.6	5.7		
2,3-DiCN	1.2	55.9	9.3	4.4	72.1	8.5		
1,8–DiCN	1.5	57.0	11.8	3.9	78.3	4.6		
1,2,3-TrCN	0.9	66.7	6.3	4.2	60.3	8.8		
1,2,3,5/-TeCN	1.8	76.4	8.8	9.5	71.5	12.6		
1,2,3,4-TeCN	1.6	80.5	8.1	4.0	70.4	10.2		
2,3,6,7-TeCN	0.3	82.2	8.6	0.2	73.0	9.4		
1,4,5,8-TeCN	1.9	86.1	10.6	9.0	73.4	12.0		
1,2,3,8-TeCN	0.4	95.7	11.5	0.3	76.3	7.6		
1,2,3,5,7-PeCN	4.6	91.4	14.9	17.0	84.7	12.6		
1,2,3,4,6-PeCN	1.0	94.9	9.2	4.3	77.7	15.4		
1,2,3,6,7-PeCN	1.4	106.6	11.2	3.1	81.5	7.2		
1,2,3,5,8-PeCN	3.6	84.2	14.4	11.6	86.1	8.1		
1,2,3,4,5-PeCN	0.9	94.2	12.1	1.8	78.5	11.2		
1,2,3,5,6,7/-HxCN	1.8	84.4	13.6	3.7	70.4	21.5		
1,2,3,5,6,8-HxCN	1.6	85.1	9.1	6.6	77.3	17.5		
1,2,3,5,7,8-HxCN	1.5	95.9	20.6	7.2	73.2	16.5		
1,2,4,5,7,8/-HxCN	0.6	84.4	14.4	3.6	74.7	9.3		
1,2,3,4,5,6-HxCN	0.6	85.0	9.5	2.7	77.2	6.0		
1,2,3,6,7,8-HxCN	0.2	89.4	11.3	0.5	72.4	14.7		
1,2,3,4,5,6,7-HpCN	3.3	86.6	7.3	6.0	73.0	15.5		
OcCN	0.8	64.2	14.9	2.2	<u>61.7</u>	13.2		
注1:回収率は、内標法(こよる絶対	回収率(/	記号のつ	いた物質は、	他の異性	体と重なる		

表27 PCNs底質試料の低濃度回収実験結果

<u></u>		<u>- (八秋秋</u> 底 質		底質			
分析方法	ア・	<u></u>	法	ソック	ファック シンクション シンクション シンシン クリンク シンシン シング シンシン シング しんしょう しょう しんしょう しょう しょう しんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう	出法	
試料量	•	10g-drv	-		10g-drv		
添加量(ng)		0.2			0.2		
測定回数		7			7		
	存在量	回収率	変動率	存在量	回収率	変動率	
物質名	%	%	%	%	%	%	
13C-MoCB(#3)	48.7	54.1	8.4	55.7	59.8	8.0	
13C-DiCB(#15)	71.5	71.0	6.5	68.9	73.7	6.7	
13C-TrCB(#31)	78.8	72.0	8.0	77.8	87.6	12.5	
13C-TeCB(#52)	78.2	72.6	7.0	70.7	81.4	9.9	
13C-TeCB(#77C)	101.8	95.0	6.1	93.0	97.1	5.2	
13C-PeCB(#118C)	102.1	95.2	6.1	95.2	94.2	7.8	
13C-PeCB(#114C)	99.1	93.9	8.1	90.4	97.2	10.3	
13C-PeCB(#105C)	98.3	94.4	7.4	92.1	95.7	10.1	
13C-PeCB(#126C)	104.0	101.0	5.5	96.6	105.3	8.5	
13C-HxCB(#153)	94.7	91.3	10.4	92.1	96.9	9.8	
13C-HxCB(#167C)	98.9	94.1	8.3	92.9	96.3	4.2	
13C-HxCB(#156C)	101.7	101.2	8.9	100.2	96.0	7.1	
13C-HxCB(#157C)	101.6	102.0	7.0	93.0	96.1	5.2	
13C-HxCB(#169C)	98.6	95.4	16.6	94.7	96.1	10.9	
13C-HpCB(#180C)	94.5	92.4	5.0	95.0	91.4	6.1	
13C-HpCB(#189C)	93.5	98.8	8.9	89.5	91.4	7.7	
13C-OcCB(#194)	93.0	87.7	5.8	93.1	94.4	9.3	
13C-NoCB(#206)	90.9	85.7	7.6	108.4	98.3	11.3	
13C-DeCB(#209)	88.2	79.4	9.6	87.1	87.3	9.5	
MoCB(#1)	13.1	43.0	10.9	3.5	59.6	8.6	
MoCB(#3)	4.8	54.9	6.9	12.1	72.2	7.1	
DiCB(#4/#10)	18.9	51.6	8.1	2.8	65.6	6.8	
DiCB(#8)	135.1	64.5	12.7	27.1	99.5	7.3	
DiCB(#15)	53.0	69.6	10.0	18.9	93.4	6.0	
TrCB(#19)	20.7	57.0	11.4	3.6	72.3	6.1	
TrCB(#18)	52.3	68.5	23.0	35.0	104.1	4.9	
TrCB(#28)	260.1	60.3	47.1	103.1	83.1	10.0	
TrCB(#33)	64.3	82.2	16.6	33.5	80.9	7.0	
TrCB(#22)	29.4	71.5	12.6	22.7	81.3	6.9	
TrCB(#37)	91.4	82.3	12.0	38.1	86.1	5.4	
TeCB(#54)	2.0	63.3	7.9	0.9	72.6	5.7	
TeCB(#52)	73.6	67.1	13.3	49.5	82.6	13.1	
TeCB(#49)	151.7	57.6	28.9	37.0	67.8	13.9	
TeCB(#44)	41.4	73.0	16.6	36.9	85.1	14.0	
TeCB(#74)	78.9	85.4	15.0	29.8	85.0	13.6	
TeCB(#70)	67.9	68.0	15.0	52.7	81.4	10.9	
TeCB(#81C)	2.3	90.2	7.5	0.3	100.8	9.2	
TeCB(#77C)	34.0	89.9	12.9	17.9	100.1	9.1	

表28-1 PCBs底質試料の低濃度回収実験結果

<u>····································</u>		<u>- 底 質</u>		底 質			
分析方法	ア	セトン抽出	法	ソック	クスレー抽	出法	
試料量		10g-dry			10g-dry		
添加量(ng)		0.2			0.2		
測定回数		7			7		
	存在量	回収率	変動率	存在量	回収率	変動率	
<u>物質名</u>	%	%	%	%	%	%	
PeCB(#104)	0.6	73.5	4.1	0.8	74.6	6.7	
PeCB(#95)	91.6	73.2	12.7	55.2	80.6	7.2	
PeCB(#101)	143.8	82.5	10.6	88.5	88.9	8.7	
PeCB(#99)	180.0	73.8	16.3	58.7	84.9	12.4	
PeCB(#119)	11.5	88.4	8.3	4.8	89.0	6.4	
PeCB(#87)	15.9	96.2	6.9	30.2	98.9	6.2	
PeCB(#110)	74.4	93.0	5.0	105.1	93.7	9.9	
PeCB(#123C)	39.1	88.5	11.3	16.8	84.4	11.1	
PeCB(#118C)	141.8	87.3	14.6	102.3	88.9	13.2	
PeCB(#114C)	3.9	95.7	6.8	5.4	89.5	9.2	
PeCB(#105C)	41.9	93.4	9.2	37.6	99.4	6.0	
PeCB(#126C)	2.1	93.0	7.9	3.1	92.0	9.8	
HxCB(#155)	1.3	86.8	7.8	0.9	85.0	7.4	
HxCB(#151)	73.9	81.2	10.3	19.3	96.6	8.6	
HxCB(#149)	243.1	66.1	33.2	89.6	93.9	13.6	
HxCB(#153/168)	200.6	81.1	16.8	63.5	94.6	11.2	
HxCB(#158/138)	85.0	117.2	17.6	74.5	102.1	7.1	
HxCB(#128)	25.1	99.8	9.1	30.7	93.1	6.8	
HxCB(#167C)	7.1	96.0	14.7	4.0	94.1	9.6	
HxCB(#156C)	15.7	96.9	14.0	14.5	94.3	8.4	
HxCB(#157C)	3.7	101.1	13.6	3.9	94.0	8.6	
HxCB(#169C)	0.6	96.0	14.3	1.1	93.8	7.5	
HpCB(#188)	2.9	80.1	9.5	0.4	80.4	10.2	
HpCB(#178)	30.1	73.6	7.9	6.0	93.9	7.0	
HpCB(#187)	187.1	86.7	32.9	37.1	87.5	15.8	
HpCB(#183)	39.0	85.2	15.5	16.7	88.8	12.5	
HpCB(#177)	59.4	96.5	26.5	15.1	83.6	14.6	
HpCB(#171)	22.4	100.2	15.2	9.6	88.4	6.5	
HpCB(#180C)	159.7	65.5	39.3	64.3	100.1	22.4	
HpCB(#191)	3.0	89.0	5.3	1.8	83.7	8.4	
HpCB(#170C)	78.0	90.4	23.0	34.9	88.5	18.9	
HpCB(#189C)	3.5	94.2	4.9	3.8	84.1	10.3	
OcCB(#202)	14.2	88.2	6.7	2.8	86.0	9.6	
OcCB(#201)	9.2	90.1	5.4	2.7	86.2	12.7	
OcCB(#199)	59.7	76.7	9.3	15.7	88.1	12.4	
OcCB(#194)	56.5	74.8	7.0	14.2	86.3	14.3	
OcCB(#205)	3.1	83.8	6.2	1.2	82.6	10.8	
NoCB(#208)	5.3	86.8	9.5	2.3	79.4	13.6	
NoCB(#206)	19.4	81.0	10.0	7.9	83.5	22.9	
DeCB(#209)	10.5	80.5	5.5	6.4	74.2	15.9	
						11 1 7 6 7	

表28-2 PCBs底質試料の低濃度回収実験結果

<u></u>		<u>生物(コイ)</u>	•		生物(コイ)			
	<u>^</u> =	キサン抽出	法	室温ア	ルカリ分解	抽出法		
試料量		20g-wet			20g-wet			
添加量(ng)		0.2			0.2			
測定回数		7			4			
	存在量	回収率	変動率	存在量	回収率	変動率		
物質名	%	%	%	%	%	%		
2-MoCN-d7	47.9	51.4	3.5	50.1	54.6	11.8		
13C-1,3,5,7-TeCN	76.6	83.9	2.6	113.6	121.6	4.9		
13C-1,2,3,4-TeCN	79.8	86.6	3.5	95.1	98.8	9.3		
13C-1,2,3,5,7-PeCN	95.0	102.4	5.3	131.0	127.5	4.4		
13C-1,2,3,5,6,7-HxCN	79.7	85.7	3.8	73.2	70.1	35.4		
13C-1,2,3,4,5,7-HxCN	79.7	83.3	4.5	52.7	49.6	51.5		
13C-1,2,3,4,5,6,7-Hp	73.8	81.1	2.7	46.9	41.5	57.0		
13C-OcCN	77.0	84.2	7.8	4.4	3.8	105.2		
1-MoCN	2.0	55.7	9.1	1.5	54.6	3.5		
2-MoCN	15.5	56.6	7.4	16.9	57.3	8.7		
1,4–DiCN	5.9	67.7	4.6	1.4	76.2	4.0		
1,5–DiCN	1.6	69.9	6.2	0.3	78.4	2.2		
2,7–DiCN	3.8	73.7	5.3	0.7	81.9	3.6		
1,2-DiCN	0.7	73.6	5.9	0.4	79.3	1.2		
2,3-DiCN	0.6	74.0	5.3	0.1	81.0	4.4		
1,8–DiCN	0.7	74.2	5.8	0.2	83.7	6.4		
1,2,3-TrCN	1.1	82.5	3.8	0.4	95.2	7.5		
1,2,3,5/-TeCN	5.4	87.6	2.8	3.8	98.1	8.1		
1,2,3,4–TeCN	1.5	88.9	4.5	0.3	104.3	5.9		
2,3,6,7-TeCN	1.3	95.5	17.8	29.4	93.5	8.1		
1,4,5,8-TeCN	4.4	96.0	5.8	1.0	78.5	31.9		
1,2,3,8-TeCN	1.3	105.3	5.8	0.2	101.2	13.1		
1,2,3,5,7-PeCN	8.7	100.0	6.0	8.0	160.3	5.0		
1,2,3,4,6-PeCN	2.0	111.6	9.4	0.8	84.7	35.7		
1,2,3,6,7-PeCN	3.8	104.1	6.9	2.0	119.2	8.3		
1,2,3,5,8-PeCN	4.2	103.5	11.5	0.8	72.2	41.9		
1,2,3,4,5-PeCN	2.1	109.8	8.4	0.4	77.8	42.9		
1,2,3,5,6,7/-HxCN	2.2	81.3	4.8	0.9	57.2	42.7		
1,2,3,5,6,8-HxCN	1.9	85.3	12.4	0.3	48.5	50.7		
1,2,3,5,7,8-HxCN	1.3	82.4	6.9	0.2	46.2	50.8		
1,2,4,5,7,8/-HxCN	1.5	85.6	5.9	0.1	44.7	57.5		
1,2,3,4,5,6-HxCN	1.3	86.4	5.9	0.4	48.3	49.1		
1,2,3,6,7,8-HxCN	0.5	91.8	3.3	0.1	55.5	46.1		
1,2,3,4,5,6,7-HpCN	2.4	77.9	4.1	0.5	38.3	57.6		
OcCN	0.7	73.8	9.3	0.2	2.3	168.1		

表29 PCNs生物試料の低濃度回収実験結果

		生物(コイ)		生物(コイ)			
	<u>^</u> =	キサン抽出	法	室温ア	ルカリ分解	抽出法	
試料量		20g-wet			20g-wet		
添加量(ng)		0.2			0.2		
測定回数		7			4		
	存在量	回収率	変動率	存在量	回収率	変動率	
物質名	%	%	%	%	%	%	
13C-MoCB(#3)	66.8	72.1	1.8	72.9	74.7	7.9	
13C-DiCB(#15)	78.8	84.0	2.8	90.7	93.9	4.0	
13C-TrCB(#31)	84.9	89.2	3.4	104.2	97.4	13.8	
13C-TeCB(#52)	70.6	77.9	4.7	89.2	90.4	4.8	
13C-TeCB(#77C)	97.9	106.1	4.6	108.1	109.8	3.9	
13C-PeCB(#118C)	94.7	99.6	3.6	111.1	109.3	2.9	
13C-PeCB(#114C)	100.0	99.2	5.8	112.8	110.1	6.5	
13C-PeCB(#105C)	96.9	98.7	5.1	114.0	110.2	5.3	
13C-PeCB(#126C)	105.8	108.8	6.1	111.3	108.3	1.3	
13C-HxCB(#153)	89.8	98.1	2.5	112.8	111.7	1.5	
13C-HxCB(#167C)	95.9	103.4	3.4	114.0	115.0	2.4	
13C-HxCB(#156C)	96.1	102.5	3.9	111.0	111.2	4.8	
13C-HxCB(#157C)	97.7	102.6	5.4	119.6	120.1	3.3	
13C-HxCB(#169C)	102.2	109.6	5.7	118.1	116.7	2.2	
13C-HpCB(#180C)	82.7	89.7	5.5	97.3	95.8	6.6	
13C-HpCB(#189C)	91.0	103.2	5.0	112.9	110.4	5.4	
13C-OcCB(#194)	93.1	108.5	4.3	108.8	107.9	1.2	
13C-NoCB(#206)	98.3	117.9	2.7	97.5	98.7	6.1	
13C-DeCB(#209)	88.3	100.1	3.2	89.4	88.2	8.1	
MoCB(#1)	0.8	65.4	5.2	0.4	65.3	12.2	
MoCB(#3)	1.6	69.5	3.8	0.8	73.7	9.0	
DiCB(#4/#10)	1.4	72.5	4.1	0.7	74.9	7.7	
DiCB(#8)	16.1	77.0	2.6	12.8	84.5	3.9	
DiCB(#15)	4.5	82.9	4.9	2.7	91.2	5.2	
TrCB(#19)	2.1	73.3	6.3	0.7	79.5	4.7	
TrCB(#18)	36.0	82.0	4.2	126.1	66.3	15.9	
TrCB(#28)	241.6	133.5	16.9	1203.5	(21.7)	(364.4)	
TrCB(#33)	39.2	89.9	8.2	192.1	79.8	22.6	
TrCB(#22)	37.7	97.2	4.9	228.2	81.5	10.6	
TrCB(#37)	18.6	103.4	4.9	17.8	105.0	11.1	
TeCB(#54)	0.2	65.0	6.3	0.1	78.8	15.8	
TeCB(#52)	143.2	100.2	22.2	455.1	39.1	118.4	
TeCB(#49)	76.0	77.8	20.5	274.9	53.2	48.6	
TeCB(#44)	97.5	90.6	11.0	348.0	62.1	53.0	
TeCB(#74)	87.2	101.8	12.0	225.3	72.7	40.6	
TeCB(#70)	131.8	97.4	22.0	353.0	54.8	49.1	
TeCB(#81C)	2.8	119.8	2.8	2.6	123.2	4.7	
TeCB(#77C)	17.5	109.6	4.8	32.3	100.5	5.0	

表30-1 PCBs生物試料の低濃度回収実験結果

<u>- <u>秋 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u></u>		<u>コ (ス)(</u> 生物(コイ)		生物(コイ)			
分析方法	<u>^</u>	キサン抽出	法	室温ア	ルカリ分解	抽出法	
試料量		20g-wet			20g-wet		
添加 量(ng)		0.2			0.2		
測定回数		7			4		
	存在量	回収率	変動率	存在量	回収率	変動率	
<u>物質名</u>	%	%	%	%	%	%	
PeCB(#104)	0.2	79.6	5.9	0.1	86.1	4.9	
PeCB(#95)	144.7	92.5	24.9	370.0	53.6	59.1	
PeCB(#101)	360.0	100.1	44.9	761.2	19.5	254.9	
PeCB(#99)	203.6	85.5	26.1	423.3	53.2	70.8	
PeCB(#119)	9.5	97.0	3.2	11.8	102.3	7.0	
PeCB(#87)	105.2	114.1	19.9	225.3	83.5	37.3	
PeCB(#110)	226.9	134.4	30.6	599.9	31.3	153.0	
PeCB(#123C)	53.1	88.0	12.1	115.9	81.8	20.6	
PeCB(#118C)	297.2	135.7	33.1	662.7	29.9	201.7	
PeCB(#114C)	9.2	97.4	4.7	14.9	96.9	5.3	
PeCB(#105C)	106.9	98.4	16.5	245.0	81.5	38.7	
PeCB(#126C)	3.6	103.6	10.2	3.9	105.7	5.9	
HxCB(#155)	6.6	86.9	3.5	4.1	94.2	4.8	
HxCB(#151)	93.0	88.9	11.8	245.4	73.9	24.2	
$H_{x}CB(#149)$	291.1	87.0	43.5	802.1	10.3	584.7	
$H_{x}CB(#153/168)$	323.4	90.4	46.3	771.0	31.6	168.3	
$H_{x}CB(\#158/138)$	260.7	113.7	33.5	680.9	32.4	174.0	
$H_{x}CB(\#128)$	71.9	94.4	14.4	191.3	74.5	36.5	
$H_{x}CB(#167C)$	18.9	101.0	11.8	42.7	109.5	9.4	
$H_{x}CB(#156C)$	35.7	103.3	11.7	78.7	112.9	10.5	
$H_{x}CB(#157C)$	9.0	97.0	5.1	21.1	109.5	6.1	
$H_{x}CB(#169C)$	11	101 7	14.6	18	112.6	43	
$H_{p}CB(#188)$	15	84 7	92	12	77.8	4.6	
$H_{p}CB(#178)$	26.3	83.0	94	64.0	80.3	10.6	
$H_{p}CB(#187)$	172.5	97.9	13.1	429.3	37.4	82.9	
$H_{p}CB(#183)$	49.7	91.6	10.0	111.9	74.9	12.0	
$H_{p}CB(#177)$	31.3	104.6	22.4	114.0	75.2	26.6	
$H_{p}CB(#171)$	19.5	94.4	7.3	43.0	85.3	7 1	
$H_{p}CB(#180C)$	181.0	1112	25.0	413.8	32.3	105.7	
$H_{p}CB(#191)$	36	93.1	11.9	4 7	89.2	6.4	
$H_{p}CB(#170C)$	73.5	106.3	12.2	189.9	71 4	20.5	
$H_{p}CB(#189C)$, 0.0 5 3	95 O	7.8	9.0	100.4	20.0 7 4	
$\Omega_{c}CB(\#202)$	0.0 9.8	91 <i>1</i>	6.1	26.7	88.8	5.6	
$O_{c}CB(\#201)$	5.0	01. 4 01.2	0.1 1 /	15.0	00.0 01 7	1 0	
$O_{c}CB(\#199)$	33.7	102.8	4.4 0.0	90 5	91.7 88.4	11.0	
$O_{2}CB(\#193)$	25.4 25.2	112.0	5.5	50.5 62.0	00.4	75	
$O_{0}O_{0}(\pi 134)$	20.Z 01	1070	J. I G 1	UZ.9 5.2	0 A O	1/.0	
	۲.۱ ۲۱	107.0	U.I 0.0	0.3 15 0	90.0 00 A	14.0	
NOOD(#200)	ן.ן 10 ד	90.Z	2.J 6.0	10.Z	09.4 06 0	4.U 7.0	
NUUD(#200)	15./ 150	0.111	0.2	29.3	00.U 0 דד	/.ა	
	10.2	94.9	C.0	Z9.1	//.3	<u>8.U</u>	

表30-2 PCBs生物試料の低濃度回収実験結果

3. 分解性スクリーニング試験結果

PCNsは、安定で光分解する傾向は認められなかった。PCBsについては試験を実施しなかった。

		1hr -				5d	lay		
					明			暗	
	pH5	pH7	pH9	pH5	pH7	pH9	pH5	pH7	pH9
1-M1CN	100	96	95	106	92	83	104	90	91
1,5/2,7-Di2CN	99	102	100	100	95	86	102	88	94
1,2,3,4/1,2,3,7-Te4C	96	98	100	96	104	95	102	107	99
1,2,7,8-Te4CN	91	100	98	97	101	93	99	92	96
1,2,3,4,6-Pe5CN	90	93	100	111	104	105	103	108	101
1,2,3,5,8/1,2,3,6,8-Pe5CN	89	91	96	103	103	99	101	104	105
1,2,3,4,5-Pe5CN	89	91	98	105	109	97	97	99	99
1,2,3,4,6,7/1,2,3,5,6,7-Hx6CN	89	91	98	105	109	97	97	99	99
1,2,3,5,7,8-Hx6CN	95	96	85	98	106	99	92	97	86
1,2,4,5,6,8/1,2,4,5,7,8-Hx6CN	95	96	85	98	106	99	92	97	86
1,2,3,4,5,6-Hx6CN	95	96	85	98	106	99	92	97	86
1,2,3,4,5,6,7,8-O8CN	103	106	104	109	114	117	94	101	96

表31 PCN分解性スクリーニング試験結果

添加量:PCN-MXB:5ng/100ml

4 分析法の検討

(1) イオン化条件の最適化

GC/MS分析では一般にイオン化電圧を70eVに設定して測定する場合が多いが、ダイオキシン類等の高 分解能GC/MS測定では、分子イオンを測定することから目的物質のフラグメンテーションをできるだけ 防止し、また、夾雑成分のイオン化を抑制する目的からイオン化電圧を通常より下げて分析する場合が 多い。PCBs及びPCNsの感度(ピーク面積値)に対するイオン化電圧の影響を図3に示したが、PCBsは 40eV付近、PCNsは45eV付近で最大感度を示した。しかし、40eV以下のイオン化電圧では、ロックマス に使用するPFKのフラグメント強度が著しく低下したことから、イオン化電圧を45eVに定めた。

図3 PCBs及びPCNsの感度(ピーク面積値)に対するイオン化電圧の影響

(2) ガスクロマトグラフ(GC)条件の最適化と装置検出限界(IDL)

今回の分析法の検討では、試料液を100μ1まで濃縮して測定する必要があったため、揮発性が小さく、 容量安定性が優れたノナンを注入溶媒として検討した。GCの操作条件は、コプラナーPCBsの測定条件¹⁾、 PCBsの分析法^{2、3)}及び中野らが報告したPCNsの測定条件^{4,5)}を参考に最適化を試みた。

図4にコプラナーPCBのGC測定条件(DB-5MS、カラム長60m、初期温度150℃)におけるPCNs2塩 化物のクロマトを示したが、PCNs及びPCBsはともにヘキサン及びノナン注入のいずれにおいても著し くピークがブロードになった。この現象は3塩化物まで及んだため、カラムをJISがDB-5MSとともに推 奨しているHT8に変更したが改善されなかった。この原因は、4塩化物以上を測定することを目的とし ているコプラナーPCBのGC測定条件は恒温槽の初期温度が高いために、低塩化物が十分にカラムに保持 されないためと考えられたため、初期温度を下げるとともに昇温条件を変更した。この結果、図4に示 すように、ヘキサン注入の場合は初期温度を50℃程度、ノナンの場合は90℃程度が最も良好な分離特性 を示した。また、ノナンの場合は、ノナンの沸点(149.5℃)を越える160℃付近まで急速に昇温してノ ナンをカラムから揮発・脱離させた後、その後に昇温速度を下げることで良好な分離特性が得られた。 ー方、ポリ塩化ターフェニル(PCTs)及びポリ臭素化ビフェニル(PBBs)は、ノナンを注入溶媒とし た場合にはピークのリーディングが著しく、ヘキサンを使用する必要があった。

図4 PCNs2塩化物のGC分離に対する初期温度と注入溶媒の影響

今回設定した GC 条件における分離状況は、SIM クロマトグラムの項(6項、図47~48及び50) に示したが、PCBs は表 32に示すように、DB-5MS では PCBs 全異性体 209 物質中 105 物質が 45 ピークとして重なり、また、HT8 では 95 物質が 40 ピークとして重なって検出された。また、コプ ラナー性の異性体は、DB-5MS では 5 物質が他の異性体と重なり、HT8 では 3 物質が他の異性体と 重なる結果となり、HT8 が良好な分離特性を示した。HT8 は PCNs 低塩化物の分離が良好な反面、 PCNs 7 塩化物の異性体が分離できなかった。PCNs 全異性体の標準品は市販されていないこと、HT8 は PCNs 異性体の GC 分離に関する情報が全く入手できないことから、今回の検討では DB-5MS を 測定カラムとして採用した。

PCBsは、表32に示すように各塩化物が相互に重なり合い、各塩化物毎に分離して測定することが不可能なことから、2回に分けて測定する必要があった。このため、PCBs4~7塩化物の異性体比を精度よく測定することを目的に、PCBsは4~7塩化物を測定した後、再度1~3塩化物と8~10塩化物を2グループに分割して測定し、PCNsは別途4グループに分割して測定した(6項:図47~図48)。

表32-1 PCB全異性体のGC分離状況

No -	CI III		<u>∃−5M</u> M/7	S R+	重複	CL TH	PAC#	HT8 M/7	R+	重
1	1	1	188	12 78	王攸	1	1	188	9.73	王
2	1	2	188	13.98		1	2	188	10.83	
3	1	3	188	14 13		1	3	188	10.97	
4	2	10	222	14 72	*	2	10	222	11 28	*
5	2	4	222	14.73	10	2	4	222	11.33	
6	2	9	222	15 58	*	2	9	222	12.05	
7	2	7	222	15.60	9	2	7	222	12.13	
8	2	6	222	15.95	•	2	6	222	12.57	
9	2	5	222	16.18	*	2	8	222	12.77	*
10	2	8	222	16.18	5	2	5	222	12.80	
11	2	14	222	16.67	•	2	14	222	13.27	
12	2	11	222	17.40		2	11	222	14.12	
13	2	12	222	17.60	*	2	13	222	14.37	
14	2	13	222	17.65	12	2	12	222	14 42	
15	2	15	222	17.87	12	2	15	222	14.63	
16	3	19	256	16.83		3	19	256	13.22	
17	3	30	256	17 10		3	30	256	13.45	
18	3	18	256	17.63		3	18	256	14.03	
19	3	17	256	17.00		3	17	256	14.00	
20	3	27	256	17.72	*	3	24	256	14.10	
21	3	24	256	18.02	27	3	27	256	14.52	
27	3	16	256	18 30	*	3	32	256	14.02	
22	3	32	256	18 32	16	3	16	256	14.02	
20	3	34	256	19.60	*	3	22	256	15.00	*
24	3	22	256	18.63	3/	2	23	256	15.22	4
20	3	20	256	18 77	54	3	29	256	15.20	
20	3	23	256	10.77		3	23	256	15.42	
21	ა 2	20	250	10.00		ა ა	20	250	15.00	
20	ა ი	20	200	10.00		ა ი	20	200	15.02	
29	ა ი	00 00	250	10.00	↑ 01	ა ა	01 00	200	16.10	
21	2	20	250	10.60	ں ب	2	20	250	16 52	÷
১। ১০	ა ი	21	200	19.02	* 01	ა ე	21	200	10.03	ተ
ა∠ ეე	ა ი	20	200	19.00	21	ა ე	20	200	10.00	
33 24	ა ი	33	200	19.00	21	ა ე	33	200	10.00	
04 25	ა ი	22	250	19.90		ა ა	22	200	17.90	
20	2	20	250	20.17		2	20	250	17.20	
30 27	ა 2	39 20	250	20.02		ა ა	39 20	250	17.57	
37 20	2	25	250	20.02		2	25	250	10.10	
20	2	27	256	21.22		2	27	250	10.00	
39 40	3	57	200	10 70		3	57	200	15.10	
40	4	50	292	10.70		4	50	292	15.65	
41	4	52	292	10.62		4	50	292	16.10	
42	4	53	292	10.02		4	53	292	16.00	
43	4	45	292	20.00		4	45	292	16.60	
44	4	4J 46	292	20.00	*	4	40	292	17 17	÷
40	4	40	292	20.30	↑ 16	4	40 52	292	17.17	Ŧ
40	4	09	292	20.43	40	4	52	292	17.23	
4/	4	/3	292	20.48	40	4	09	292	17.20	
4ð 40	4	5Z	292	20.00	* Ε0	4	13	292	17.33	
49 50	4	43	292	20.62	52	4	43	292	17.45	*
<u>00</u> ;}-1	4. 促性吐	49 - 問 (D+)	<u></u> († 급기		志/1	4 (ml) ナ./回	<u>49</u> 日日ロノー 29	<u></u>	<u></u> お	
エー	(不行吁	n町(RC) 安味/-	しよ、同が	まぼう おうしょうしん ひんしょう しょうしん しょうしょう しょうしょう しょうしょう しょう しょうしょう しょうしょう しょうしょう しょう	=/12、1 μ {	g/ IIII/ ど値 と担 <i>へい</i> +	⊴刀川〜沢 ちヱ	リルビレバン	U) 、	
	JIVI測 (①ロロ	た可 -	のいるれ	111順と	は共はる 重ち 市	い あっかめ	ູ້ດາ	0,000,000		
	UDB	-21412:)	ほぼ∶∪./	2Jμm ALL	▼℃、内		x U.3	ムロロロ ノムニ 010	°C(F/\)	
	ூபா	. 8	90℃C(1110000000000000000000000000000000000	2万)—2 25.0m	2010/分 – 14、内	r-160℃ 径·50m	-5°C/	✓ 方一310 2mm	C(5分)	

100°C(1.5分) −25°C/分−200°C−3.5°C/分−320°C(5分) 注2:ピークの重複は、SIM測定におけるピーク分離の状況から判定した。

表32-2	PCB全異性体のGC分離状況

No -	CI II		 M/7	- Rt	重複		IPAC#	M/7	R†	重
51	4	<u>47</u>	292	20.80	*	4	75	292	17.67	*
52	4	48	292	20.80	47	4	65	292	17.70	7
53	4	75	292	20.83	47	4	47	292	17 72	7
54	4	65	292	20.88	*	4	48	292	17.72	7
55	4	62	292	20.93	65	4	62	292	17.85	'
56	4	44	202	20.00	*	т Д	44	202	18 33	*
57	4	50	202	21.27	11	4	50	202	18.40	1
58		12	202	21.02	11	1	12	202	18 55	-
50	4	72	202	21.40	*	4	72	202	18.55	*
60		71	202	21.00	72	1	64	202	10.77	7
61	4	/1	202	21.07	*	4	71	202	10.00	, 7
62	4	64	202	21.75	/11	4	/1	202	10.00	* '
0Z	4	04	292	21.70	41	4	41	292	19.00	* 1
03	4	08	292	21.//	41	4	00	292	19.03	4
04	4	40	292	22.02		4	40	292	19.40	*
65	4	57	292	22.07		4	57	292	19.45	4
66	4	6/	292	22.25		4	6/	292	19.73	
6/	4	58	292	22.32		4	63	292	19.87	*
68	4	63	292	22.45		4	58	292	19.92	6
69	4	61	292	22.57	*	4	61	292	20.15	*
70	4	74	292	22.65	74	4	74	292	20.17	6
71	4	76	292	22.75	*	4	70	292	20.38	
72	4	70	292	22.78	76	4	76	292	20.50	*
73	4	66	292	22.87	*	4	80	292	20.57	8
74	4	80	292	22.90	66	4	66	292	20.67	
75	4	55	292	23.15		4	55	292	21.10	
76	4	56	292	23.43	*	4	60	292	21.52	*
77	4	60	292	23.48	56	4	56	292	21.57	6
78	4	79	292	24.02		4	79	292	22.28	
79	4	78	292	24.38		4	78	292	22.87	
80	4	81C	292	24.75		4	81C	292	23.40	
81	4	77C	292	25.13		4	77C	292	24.03	
82	5	104	326	21.08		5	104	326	17.63	
83	5	96	326	21.88		5	96	326	18.67	
84	5	103	326	21.97		5	103	326	18.87	
85	5	100	326	22.18		5	100	326	19.20	
86	5	94	326	22.42		5	94	326	19.53	
87	5	98	326	22.70	*	5	102	326	19.90	*
88	5	102	326	22.70	98	5	95	326	19.98	10
89	5	93	326	22.78	*	5	93	326	20.00	10
90	5	95	326	22.83	93	5	98	326	20.00	10
91	5	121	326	22.85	93	5	88	326	20.27	*
92	5	88	326	22.92		5	91	326	20.32	8
93	5	91	326	23.08		5	121	326	20.33	12
94	5	92	326	23.45		5	92	326	21.00	
95	5	84	326	23.60	*	5	84	326	21.00	*
96	5	90	326	23.65	84	5	89	326	21.28	R
Q7	5	101	326	23.67	84	5	00 00	326	21.20	ں م
00	5	20	320	23.07	04 Q <i>1</i>	5	101	220	21.02	0 0
00	5	112	320	20.00	Q/	5	112	220	21.00	0
33	5	00	320	20.1J 22.22	04	5	00	220	21.00	
100		33	020	ZJ.03		J	33	320	21.0/	

90°C(2分) - 20°C/分-160°C-5°C/分-310°C(5分) ②HT8 :膜厚:0.25μm 長さ、内径:50m x 0.22mm 100°C(1.5分) - 25°C/分-200°C-3.5°C/分-320°C(5分) 注2:ピークの重複は、SIM測定におけるピーク分離の状況から判定した。

表32-3	PCB全異性体のGC分離状況

-			D	B-5M	s					HT8		
_	No -	CI II	JPAC#	M/Z	Rt	重複		CI II	JPAC#	M/Z	Rt	重複
	101	5	119	326	24.08	*		5	112	326	22.07	*
	102	5	112	326	24.12	119		5	119	326	22.07	112
	103	5	83	326	24.22	*		5	83	326	22.20	*
	104	5	108	326	24.22	83		5	108	326	22.28	83
	105	5	97	326	24.42	*		5	86	326	22.53	*
	106	5	86	326	24.43	97		5	97	326	22.55	86
	107	5	125	326	24.50	97		5	117	326	22.55	86
	108	5	111	326	24.58	*		5	125	326	22.62	86
	109	5	117	326	24.58	111		5	116	326	22.70	*
	110	5	87	326	24.63	111		5	87	326	22.75	116
	111	5	116	326	24.63	111		5	115	326	22.77	116
	112	5	115	326	24.67	111		5	111	326	22.82	116
	113	5	85	326	24.78	*		5	85	326	23.07	*
	114	5	120	326	24.80	85		5	120	326	23.18	85
	115	5	110	326	24.98			5	110	326	23.28	
	116	5	82	326	25.38			5	82	326	23.98	
	117	5	124	326	25.72			5	124	326	24.45	
	118	5	107	326	25 73	*		5	109	326	24 62	*
	119	5	109	326	25.77	107		5	107	326	24 65	109
	120	5	1230	326	25.87	107		5	1230	326	24.80	100
	120	5	106	326	25.07	*		5	106	326	24.00	*
	100	5	1100	220	25.95	т 106		5	1100	220	24.92	т 106
	122	5	1140	320	20.00	100		5	1140	320	24.37	100
	123	Э Е	100	320	20.37	ጥ 11/		5 5	100	320	20.43	
	124	5 5	1050	320	20.43	114		5 F	1050	320	20.72	
	125	5 5	1050	320	20.88	*		о Г	1050	320	20.45	
	120	5	127	326	26.97	105		5	127	326	26.45	*
	127	5	1260	326	28.12			5	1260	326	28.37	127
	128	6	155	360	23.30			6	155	360	20.28	
	129	6	150	360	24.08			6	150	360	21.35	
	130	6	152	360	24.35			6	152	360	21./3	
	131	6	145	360	24.58	*		6	145	360	22.12	
	132	6	148	360	24.63	145		6	148	360	22.40	*
	133	6	136	360	24.90			6	136	360	22.47	148
	134	6	154	360	24.95			6	154	360	22.87	
	135	6	151	360	25.37			6	151	360	23.38	
	136	6	135	360	25.50			6	135	360	23.62	*
	137	6	144	360	25.53			6	144	360	23.72	135
	138	6	147	360	25.63			6	147	360	23.77	135
	139	6	149	360	25.80			6	149	360	24.05	*
	140	6	139	360	25.82			6	139	360	24.10	149
	141	6	140	360	25.92			6	140	360	24.30	
	142	6	143	360	26.12	*		6	143	360	24.50	
	143	6	134	360	26.15	143		6	134	360	24.65	
	144	6	133	360	26.20			6	133	360	24.92	*
	145	6	131	360	26.32	*		6	142	360	24.92	133
	146	6	142	360	26.37	131		6	131	360	24.95	133
	147	6	165	360	26.37	131		6	165	360	25.23	*
	148	6	146	360	26.45	*		6	146	360	25.32	165
	149	6	161	360	26.48	146		6	161	360	25.50	*
	150	6	153	360	26.72	*		6	132	360	25.53	161
	注1:	:保持田	時間(Rt)は、高源	農度標準	液(1µ	lg∕	/ml)を	固別に渡	川定したため	<i>b</i> 、	
		SIM》	則定時に	おける深	容出順と	は異な	る	場合が	ある。			
		(1)DI	B-5MS :	膜厚:0.2	25 µ m	長さ、戍	内谷	£:60m	n x 0.3	2mm		

90°C(2分)-20°C/分-160°C-5°C/分-310°C(5分) ②HT8 :膜厚:0.25µm 長さ、内径:50m x 0.22mm 100°C(1.5分)-25°C/分-200°C-3.5°C/分-320°C(5分) 注2:ピークの重複は、SIM測定におけるピーク分離の状況から判定した。

表32-4	PCB全異性体のGC分離状況

No -			<u>3−5M</u> M/7	S D+	舌炬			H18 M/7	D+	毛
151	6	162	360	26.75	<u>里版</u> 152	6	152	360	25.72	里
152	6	132	360	26.75	100	6	168	360	25.72	
152	6	141	360	20.70		6	141	360	26.00	
154	6	137	360	27.17		6	137	360	26.50	
155	6	130	360	27.00		6	130	360	20.07	
156	6	164	360	27.43	*	6	164	360	20.02	*
157	6	163	360	27.00	164	6	163	360	27.07	1
152	6	138	360	27.05	*	6	138	360	27.10	
150	6	150	360	27.07	120	6	160	360	27.20	*
160	6	160	360	27.73	138	6	158	360	27.33	т 1
161	6	129	360	27.73	100	6	129	360	27.50	'
162	6	166	360	28.20		6	166	360	27.00	
162	6	150	360	20.20		6	150	360	27.30	
164	6	160	260	20.52		6	160	260	20.40	*
165	6	102	360	20.52		6	102	360	20.07	т 1
166	6	1670	260	20.00		6	1670	260	20.70	'
167	6	1560	360	20.73		6	1560	300	29.00	
160	6	1570	360	20.62		6	1570	360	30.50	
160	6	1600	360	20.00		6	1600	360	30.00	
170	7	1030	300	26.20		7	1030	300	2/ 20	
170	7	100	304	20.00		י ד	100	204	24.00	
172	7	170	394	20.05		י ר	170	394	24.02	
172	7	176	304	27.10		י ד	176	204	25.52	
173	7	196	394	27.43		י ר	196	394	20.90	
175	7	179	304	27.77		י ד	170	204	20.42	
176	7	175	304	27.00		י ד	175	204	20.30	
177	7	197	304	20.07	*	י ד	192	204	27.00	*
170	7	107	204	20.17	107	י ד	102	204	27.43	-T -1
170	7	102	204	20.20	107	7	107	394 204	27.47	
100	7	105	204	20.00		7	105	204	27.00	
100	7	17/	204	20.00	*	7	17/	204	20.00	
101 100	7	1/4	204	29.02	т 17/	7	1/4	204	20.00	
102	7	101	204	29.00	1/4	7	101	394 204	20.00	
100	7	171	204	29.22		7	171	204	20.90	
104	7	172	204	29.40		7	172	204	29.33	
100	7	102	204	29.00	*	7	173	394 204	29.00	
100	7	192	204	29.77	т 100	י ר	102	204	20.20	
10/	7	1000	204	29.70	192	7	192	394 204	20.50	*
100	7	1000	204	20.03	т 100	י ר	1000	204	20.00	т 1
109	7	195	394	20.07	100	/ 7	195	394	30.77	
190	7	1700	204	21.05	*	7	1700	394 204	31.10	
100	7	100	204	21.05	т 170	י ר	100	204	32.22	
192	7	190	204	22.05	170	7	190	394 204	32.4Z	
193	0	1090	394 100	32.00		0	1090	394 100	04.20 00.45	
194	ŏ o	202	420 100	29.30		ŏ о	202	42ð 100	20.40	
100	Ŏ O	201	420 100	29.07		ð o	201	420 100	20.92	
107	Ŏ O	204	420 100	29.0/ 20.07		ð o	204	420 100	29.02	
19/ 100	Ŏ O	197	420 100	29.0/ 20.42		ð o	19/	420 100	29.30	
190 100	ð n	100	420 100	30.43		ð n	100	420 400	3U.18	÷
199	ð o	198	420 100	31.13 21.07		ŏ о	198	428 100	31.93	* 1
<u>200</u> 注1	ŏ . 促性□	199	<u>420</u> 11 吉3	<u></u> 豊	志(1,	$\frac{\delta}{\sigma/ml}$	旧印ビージ	428	<u>্রা.খ/</u> ধ্রু	1
注「	「木村」	lifill(Rt) 副空時に	は、尚が	辰 皮 悰 격 卒 山 﨑 し	=/夜(↓ /+ 更+>:	g/ml)を と担みぶ	1回別1〜湯 【ち ス	明正し/こ/こ	α)、	
	עוווט יח(ד)	司に立て	のいる?	삼山順と 25 //	は共はる 重キ ゖ	い 切 口 ル	ຸທູຈູ	200000		
	UU	9-01vi2:)	法序:U.i	20μm ウム_ (▼C、M 10℃ //	1111 : 0UN く160°	∩ x 0.3 ℃≂℃	2000 ノムニ210	° ሶ (ፍረ <u>ኦ</u>)	
	டுப	та .	1000 (11) 1018	$2\pi - 2$	とう しくう 上さ け	」一100		∕ л'−зі0 2mm	C(321)	
	С'Ц	10 :);	氏序: U.4 100°℃	20μm (1 5公)		in王: 50m イムニック	IXU.Z ∩°⊂—?!	200000 で イム	220°C/1	- - -
					- za u /		0 0 - 3.	$n n = \pi$	070 U.S	171

表32-5	PCB全異性体の	GC分離状況
-------	----------	--------

Na		D	B-5N	IS			HT8							
INO -	CI I	UPAC#	M/Z	Rt	重複	CI	Ι	UPAC#	M/Z	Rt	重複			
201	8	203	428	31.48	*		8	196	428	32.37	*			
202	8	196	428	31.50	203		8	203	428	32.43	196			
203	8	195	428	32.50			8	195	428	33.48				
204	8	194	428	33.22			8	194	428	35.57				
205	8	205	428	33.35			8	205	428	36.00				
206	9	208	462	32.42			9	208	462	32.98				
207	9	207	462	32.73			9	207	462	33.97				
208	9	206	462	34.42			9	206	462	36.82				
209	10	209	498	35.43		1	0	209	498	37.42				

注1:保持時間(Rt)は、高濃度標準液(1μg/ml)を個別に測定したため、 SIM測定時における溶出順とは異なる場合がある。

①DB-5MS:膜厚:0.25µm 長さ、内径:60m x 0.32mm
 90°C(2分) - 20°C/分 - 160°C - 5°C/分 - 310°C(5分)
 ②HT8 :膜厚:0.25µm 長さ、内径:50m x 0.22mm
 100°C(1.5分) - 25°C/分 - 200°C - 3.5°C/分 - 320°C(5分)
 注2:ピークの重複は、SIM測定におけるピーク分離の状況から判定した。

GC昇温条件の変更、DB-5MSのカラム長の変更により、装置検出限界値(IDL)は図5に示すように約3倍程度改善し、PCBs及びPCNsで約30fgのIDL値が得られた。また、低塩化物から高塩化物までの感度変動を小さくすることができた。

図5 装置検出感度(IDL)に対するイオンGC条件最適化の効果 30m:DB-5MS(膜厚: 0.25μ m 長さ、内径:30m x 0.25mm) 70° (2分) -8° C/分 -310° (5分)¹⁵⁾ 60m:DB-5MS(膜厚: 0.25μ m 長さ、内径:60m x 0.32mm) 90° (2分) -20° C/分 -160° C -5° C/分 -310° (5分)

(2) 水質固相抽出法の検討

PCNs及びPCBsの水環境中濃度は、ダイオキシン類と同様に極めて低いレベルにあると考えられ、高 感度分析が必要となる。このため、大量試料の濃縮が可能な固相ディスクを用いた固相抽出法について 検討した。

図6に各種固相材におけるPCNsの固相抽出率を示したが、比較的高濃度(10ng)で、少量の試料(1L) を濃縮する場合には、固相材の違いが与える回収率への影響は大差なかった。

図6 PCNs固相ディスク抽出(47mmφ、精製水:1L、添加量:10ng)の回収率 抽出溶媒:酢酸メチル、ジクロロメタン、ベンゼン各20ml

高感度分析を行うためには、試料量を5L以上に増加する必要があるため、ダイオキシン類及びPCBs の大容量固相抽出で使用^{1,3)}され、高速ろ過が可能なC18-FFについて溶出溶媒及び溶出方法について 検討し、その結果を図7及び8に示した。ろ紙から直接溶媒抽出した場合には、PCBs(図8)ではアセ トンと酢酸エチルに大きな差はなかったが、PCNs(図7)は酢酸エチルがアセトンに比較して高い回収 率を示した。直接溶媒抽出とソックスレー抽出法を比較した場合には、ソックスレー抽出法が直接溶媒 抽出法に比較して高い回収率を示し、特にトルエンはアセトンに比較して回収率が高い傾向にあった。

図 7 PCNs固相抽出における抽出溶媒及び抽出方法の影響 (C18-FF、47mm、添加量10ng、 200ml精製水)

図8 PCBs固相抽出における抽出溶媒及び抽出方法の影響 (C18-FF、47mm、添加量10ng、 200ml精製水)

図6~8の添加回収実験では、分液ロートに採取した試料水に標準液(アセトン溶液)を添加し十分 に振とうして、目的物質を水に溶解した後、固相ディスクに通水する方法で実験を行ったが、図9及び 10では、固相ディスク上のガラス線維ろ紙に直接標準液を滴加し、更に精製水5Lを通水した場合の回 収率(ソックスレー抽出法)を示した。ろ紙上に直接標準液を添加すると、PCNs(図9)では、1,2,3, 5,6,7-HxCN、1,2,3,6,7,8-HxCN、OcCN等の異性体の回収率が著しく低下し、特にアセトンを抽出溶媒と した場合には、この傾向が著しかった。PCNsに比較して、PCBs(図10)では、このような現象は認め られなかったが、トルエンはアセトンに比較して高い回収率を示した。このように、標準液をディスク 上のろ紙に直接添加すると著しく回収率が低下する場合があるため、サロゲート物質の添加は、分液ロ ートに採取した試料水に添加し、サロゲート物質を試料水に十分に溶解した後通水する方法を採用した。

図 9 PCNs大容量固相抽出における抽出溶媒及び抽出方法の影響 (C18-FF、90mm、添加量0.5ng(ディスク上に添加)、5L精製水)

図10 PCBs大容量固相抽出における抽出溶媒及び抽出方法の影響 (C18-FF、90mm、添加量0.5ng(ディスク上に添加)、5L精製水)

一方、ソックスレー抽出における抽出時間の影響を同じく図9及び10に示したが、目的物質の大部分は1時間以内に溶出していたが、夾雑成分が含まれる環境試料では抽出率が低下することが懸念されたため、抽出時間を6時間以上とし、抽出溶媒もダイオキシン類の分析法¹⁾との互換性を考慮して、トルエンを採用した。

精製水、河川水及び海水における低濃度添加回収実験の結果を図11及び12に示したが、PCNs及びPC Bsは、夾雑物が含まれる河川水及び海水の回収率は精製水に比較して低下する傾向を示し、その傾向は 低塩化物及び高塩化物で顕著であった。しかし、回収率は概ね60%以上の値を示し、サロゲート物質を 用いた同位体希釈法により十分に補正できる範囲内であった。

図11 PCNs大容量固相抽出における添加回収率(絶対回収率) (C18-FF、90mm、試料量:5L)

図12 PCNs大容量固相抽出における添加回収率(絶対回収率) (C18-FF、90mm、試料量:5L)

(4) アルカリ分解法の検討

生物モニタリングのPCNs分析法⁶⁾、また、現行のPCBsの公定分析法⁷⁻⁹⁾、の環境ホルモン調査マニ ュアル¹⁰⁾、多環芳香族炭化水素類 (PAHs)¹¹⁾等では、加熱アルカリ分解法が、一方、ダイオキシン 類¹²⁾、ポリ臭素化ビフェニル¹³⁾等では加熱アルカリ分解による脱塩素を防止する目的で、室温アル カリ分解が採用されている。

PCNsをアルカリ分解した結果を図13に示したが、加熱アルカリ分解では7及び8塩化物の異性体が分解し、逆に2及び4塩化物の異性体が増加した。また、室温アルカリ分解(1N KOH、20時間)の場合でも、同様な分解が認められた。このため、アルカリ濃度を1N以下に下げ、アルカリ分解時間を1及び4時間に短縮した結果を図14に示したが、PCNsは、室温分解においても7及び8塩化物が分解したため、アルカリ濃度を0.5Nに下げるとともに、分解時間を1時間とした。なお、アルカリの溶解溶媒をメタノールに変更した実験も実施したが、PCNsの回収率に大差はなかった。

図13 PCNsの加熱及び室温アルカリ分解(1N KOH/エタノール溶液、添加濃度:10ng)

図14 PCNsの室温アルカリ分解(1N KOH/エタノール溶液、添加濃度:10ng)

一方、PCBsを加熱アルカリ分解した結果を図15に示したが、加熱アルカリ分解では7塩化物以上のP CBsが分解し、特に8塩化物(#205)、9塩化物(#206,208)の分解は著しく、10塩化物(#209)は完 全に分解した。一方、室温分解では、PCBsは1Nの濃度で20時間を経過しても分解は認められなかった ため、生物試料のPCBsについては、室温アルカリ分解抽出法を採用した。

図15 PCBsの加熱及び室温アルカリ分解(1N KOH/エタノール溶液、添加濃度:5ng、分解時間:1時間)

アルカリ分解におけるPCNsの分解は微量濃度になるほど促進される傾向を示した。また、底質の抽出 で使用するアセトンが分解液中に残留するとPCNsの分解が促進される傾向があった。特に、夾雑物質を 含まないブランク試料では、この傾向が著しかった。このため、アセトンの減圧除去における損失、室 温アルカリ分解時に共存する可能性のあるアセトン及び水の影響を検討する目的で、低濃度領域におけ る室温アルカリ分解実験を行った。アセトンの減圧除去による損失、水及びアセトンの単独混入は、図 16に示すようにPCNsの回収率に影響を及ぼさなかったが、水とアセトンが混在すると8塩化物のPCNs が異常に分解する例(H2O/Ac-2、2例中1例)があった。一方、PCBsについては、低塩化物の異性体 の回収率がやや低下するものの、異常な分解が生ずる傾向はなかった(図17)。このため、アセトン抽 出法を用いた底質の分析操作では、底質を抽出したアセトン溶液にエタノールを過剰に添加して減圧濃 縮することによりアセトンをできるだけ留去する方法を採用するとともに、ブランク試料については水 を添加しないで作成することとした。

室温アルカリ分解法は、生物試料の脂肪の大部分を除去できること、また、底質では酸性及び水溶性 成分を除去し、また、底質に多量に含まれる単体硫黄を除去できることから、GPCにおける流路の目 詰まりを防止できる効果があり、更に硫酸洗浄における洗浄回数の削減にも効果があった。また、図18 に示すように、室温アルカリ分解のクリーンアップ効果は加熱アルカリ分解と同等の効果を示した。

図16 PCNsの低濃度室温アルカリ分解に対するアセトン留去、水及びアセトン混入の影響 (1N KOH/エタノール溶液、添加濃度:0.2ng、分解時間:1時間)

図17 PCNsの低濃度室温アルカリ分解に対するアセトン留去、水及びアセトン混入の影響 (1N KOH/エタノール溶液、添加濃度:0.2ng、分解時間:1時間)

図18 共通底質(東京湾)抽出液の各種アルカリ分解の効果 EtOH-再抽出は、アルカリ無しのアルカリ分解操作

(5) 硫酸洗浄の検討

PCNsの同時分析を目的に、アルカリ濃度を下げた室温アルカリ分解を採用したことから加熱分解法に 比較してクリーンアップ効果が低下する可能性があること、また、高濃縮測定を行う必要から、残存す る夾雑成分を除去する目的で硫酸洗浄を行った。その結果を図19に示したが、PCNsは水分が混入すると 低塩化物の回収率が低下したため、硫酸洗浄時には、脱水を十分に行うこととした。

しかし、図20に示すように、PCNsは低濃度(添加量:lng)になると3塩化物以下の異性体の回収率 が低下する傾向を示し、PCBsも同様な傾向を示した(図21)。

図19 PCNsの硫酸洗浄と水分の影響(添加濃度:10ng)

図20 PCNsの低濃度硫酸洗浄(添加濃度:1ng)

図21 PCBsの低濃度硫酸洗浄(添加濃度: 1 ng)

(6) アセトニトリル (メタノール) / ヘキサン分配の検討

生物モニタリングのPCNs分析法⁶⁾、また、現行のPCBsの公定分析法⁷⁻⁹⁾、環境ホルモン調査マニュ アル¹⁰⁾等では、シリカゲル、フロリジル等を使用したクリーンアップが行われているが、図22示すよ うにPCNs、PCBs等が溶出する分画には、底質等に含まれる多量の鉱物油成分が溶出することから、高 感度分析が不可能となっている。鉱物油、生物試料中に含まれる脂質成分の除去には、図23に示すアセ トニトリル/ヘキサン分配が有効であるが、図24及び25に示すように、PCNs及びPCBsのアセトニトリ ル層またはメタノール層への分配率は低く、高塩化物の異性体では95%以上の回収率を得るためには、 4回以上の分配操作を必要とし、分析法には採用できなかった。また、クリーンアップ効果の向上を目 的にアセトニトリル(またはメタノール)を含水させた場合には、更に分配率が減少した。

図22 シリカゲルカラムによる底質の分画 (5%含水シリカゲル、5g、10mmφ)

図23 アセトニトリル/ヘキサン分配の効果

図24 PCNsのアセトニトリル (メタノール) / ヘキサン分配(1回抽出)
 添加濃度: 1 ng、容積比=100:10(溶媒: ヘキサン)、%は含水率

図25 PCBsのアセトニトリル (メタノール) / ヘキサン分配(1回抽出)
 添加濃度: 1 ng、容積比=100:10(溶媒: ヘキサン)、%は含水率

(7) GPC処理の検討

底質試料は、多量の鉱物油成分を含む。鉱物油成分は、アルカリ分解、硫酸洗浄、銅粉処理、シリカ ゲル、フロリジル等のカラムクロマトグラフィー(図22)でも分離することはできない。また、鉱物油 の除去に有効なアセトニトリル(メタノール)/ヘキサン分配(図23)は、PCBs及びPCNsの回収率が 低い(図24及び25)ため、適用できなかった。多量の鉱物油成分の混入は、GCカラムの劣化、バック グランドの上昇を引き起こし、また、高濃縮測定(試料容量100μ1)は不可能であった。

このため、GPC (Gel Permeation Chromatography) による鉱物油成分の分離を試みた。使用したGPCカラムは、フタル酸エステル類の分析法^{10,14)}で使用されたCLNpak PAE-2000について検討し、 図26に示すようにPCBsを14~16分に、PCNsを16~18分に分離することができた。また、図27に示すように、底質試料中の鉱物油成分の大部分は14分までに溶出し、PCBs及びPCNsの溶出する分画のTICクロマトグラムはベースラインが認識できる程度まで夾雑物質が除去され、また、底質中の主要な妨害成分である単体硫黄は18~20分に溶出し、妨害成分の大部分を排除できた。更に、GPC処理は、生物試料中の妨害成分にも有効で、図28に示すようにPCBs及びPCNsの分画にはほとんど妨害成分は存在しない状態まで精製できた。

PCBs

PCNs

図26 PCBs及びPCNsのGPC分離(移動相:アセトン)

図27 底質試料に対するGPC処理の効果(移動相:アセトン)

図28 生物試料に対するGPC処理の効果(移動相:アセトン)

GPCを長期間使用した場合にはカラムの劣化が生じ、図29に示すように本来16~18分の分画に溶出 するPCNsが18~20分の分画に溶出するようになった。このため、プレカラムの交換、注入溶媒の変更等 を行ったが、注入溶媒をシクロヘキサン、ベンゼン、トルエンの芳香属性のある溶媒にした場合には、 各物質の溶出時間が早くなる傾向があったため、若干の芳香族性を有するシクロヘキサンを移動相に添 加し、分離性能の回復を試みた。その結果、図30に示すように5%程度のシクロヘキサンを移動相に添 加するとカラムが劣化する以前の状態に近い分離性能(図31)に復帰できた。また、シクロヘキサンを 添加することで長期間安定した分離性能を維持できるようになった。移動相を5%シクロヘキサンとし た場合のGPCにおける低濃度回収実験結果を図32及び33示したが、PCNs及びPCBsの回収率は、濃縮 時損失の範囲内であり、良好な回収率を示した。

(13C-1,2,3,4,5,6,7-HpCN)

図31 PCBs及びPCNsのGPC分離(移動相:5%シクロヘキサンアセトン)

図32 PCNsのGPC処理における低濃度回収率 (移動相:5%シクロヘキサンアセトン、添加量:0.5ng)

図33 PCBsのGPC処理における低濃度回収率 (移動相:5%シクロヘキサンアセトン、添加量:0.5ng)

GPCにおける主要な環境汚染物質の分離状況を表33に示す。GPCでは、分子量の大きな物質が早 い保持時間を示すのが原則とされているが、表33においても、直鎖炭化水素類の分離はこの原則に従っ て分離されており、また、図34に示したフタル酸エステル類(PAEs)の例でも分子量の大きな物質(鎖 長が長いPAEs)の保持時間が早くなっている。一方、表33に示す多環芳香族炭化水素類(PAHs)では、 環数が増加するほど保持時間は遅くなり、GPCの充填剤との相互作用が大きく影響していた。

また、有機塩素系化合物については、図34に示すように各化合物の基本骨格が溶出する分画に塩素化物の各異性体が溶出する傾向を示し、例えば、14~16分には、BiphenylとPCBs、Terphenylとポリ塩化ターフェニル(PCTs)、16~18分には、NaphthaleneとPCNs、Dibenzofuranと2,4,8-Trichlorodibenzofuranは同じ分画に溶出した。また、Dibenzo-p-dioxinは、16~18分に溶出することからダイオキシン類は16~18分のPCNsが溶出する分画に溶出するものと推定された。また、底質試料では、14~16分にメチルビフェニル等のビフェニル誘導体、16~18分にメチルナフタレン等のナフタレン誘導体が溶出していた。

表33 主要な環境汚染物質のGPCにおける分離状況(カラム: PAE-2000、移動相: アセトン)

Rt	Compounds
10min~	n-Paraffin(>C17)、CPs(40%Cl)、Di(2-ethylhexyl) Adipate
12min~	n-Paraffin(<c17)、cps(70%cl)、<math>\alpha-Endsulfan、Diisopropylnaphthalene</c17)、cps(70%cl)、<math>
	Tetraphenylethylene、Tetraphenyltin
	TBP、TCPP-2,3、TNAP、CRP、ODP、TBXP、TOP,TCP、TBPP(OPEs)
	Di-i-BP、Di-n-BP、Dipent-P、BPBG、Dihexyl-P、Benzyl butyl-P、Di(2-butoxy) Phthalate
	Dicyclo-P、DihepP、DEHP、Diphnyl-P、DinonyP、Di-n-octyl Phthalate、Pesticides
14min \sim	PCBs、Biphenyl、PCTs、Terphenyl、4-Nitrotoluene、HCHs、Chlordene、Heptachlor
	Aldrin, Octachlorostylene, Oxychlordane, Heptachlor-epoxi, Chlordane, Nonachlor
	DDTs、NIP、Dieldrin、Endrin、 eta –Endsulfon、Endsulfan Sulfate、Methoxychlor
	Mirex, Stylene-Dimers&Trimers, Dimethylnaphthalen, Benzophenone, 1-Phenynaphthalene
	Triphenylmethane、Reten、4-Benzylbiphenyl、Tetraphenylene、p-Quaterphenyl
	TEP、TAP、TCEP、TCPP-1、TPP、TDBP(OPEs)、DMP、Dimethyl tere-Phthalate
	DEP, Diethyl tere-P, Di-iso-Propyl-P, Di-n-propyl-P, Diallyl Phthalate, Pesticides
16min \sim	PCNs、Naphthalene、1-Naphthol、2,4,8-TCDF、Dibenzofuran、Dibenzo-p-dioxin、PBDEs
	Stylene-Dimers&Trimers, HCB, Acenaphthene, Fluorene, Dibenzothiophene, Phenanthren
	Anthracene、Fluoranthene、2,3-Benzofluorene、NAC、Fthalide、MPP-sulfoxide
18min \sim	Kepone, Benzo[c]cinnoline, Anthraquinone, Pyrene, Benzo[a]anthracene, Chrysene
	Triphenylene、Naphthacene、Benzo[b+j+k]fluoranthene、3-Methylcholanthrene
	Dibenz[a,h]anthracen、
20min~	Benzo[a]pyrene、Benzo[e]pyrene、Perylene、Indeno[1,2,3-cd]pyrene、Benzanthrone
22min~	Benzo[ghi]perylene、Anthanthrene、Naphtho[2,3-a]pyrene

図34 フタル酸エステル類及び塩素系化合物のGPC分離(移動相:アセトン)

図34に示すように、GPCにおいて塩素系化合物はその基本骨格と同じ分画に溶出する。PCBsについて、同一塩素数の異性体の分離状況を図35に示したが、平面構造を有するコプラナーPCBs(IUPAC番号にC記号を付記)は、非コプラナー性のPCBsに比較して保持時間が遅くなっていた。このことは、コプラナーPCBがGPCの充填剤により強く吸着するためと考えられ、PAHsの挙動と類似していた。GPC充填剤への吸着は、ピークのテーリング、回収率の低下を引き起こすことから、カラムの劣化対策として採用した移動相へのシクロへキサンの添加は、ピークのテーリング防止対策としても効果があった。

GPC法を適用することで、試料中に存在する高分子の夾雑物質を除去できたことから、キャピラリーカラムとGC/MSの性能を長期間維持することが可能になった。また、従来のオープンカラムに代えてカートリッジカラムが使用できるようになったことから、実質的な溶媒使用量が削減され、高感度測定に必要なブランク値の低減化を図ることができた。

PCBs5 塩化物

PCBs6 塩化物

図35 コプラナーPCBsのGPC分離(移動相:アセトン)

(8) カラムクロマトグラフィーの検討

GPC処理後に残存する低分子の極性妨害物質の除去を目的にカラムクロマトグラフィーの検討を 行った。カラムは、GPC処理によって夾雑物の負荷量を大幅に削減できたことから、カートリッジカ ラム(シリカゲル及びフロリジル、1g,ガラス製注射筒形)について検討したが、夾雑物の多い試料を想 定して、大容量カートリッジ(フロリジル、5g)及び5%含水シリカゲル(C200、5g、10mm φ)に ついても検討を行った。各カラムについて設定した溶出条件におけるPCNs及びPCBsの低濃度回収率は、 図36及び37に示すように濃縮時損失の範囲内であり、良好な回収率を示した。

図36 各種カラムクロマトグラフィー及び濃縮操作におけるPCNsの回収率(添加濃度: 1ng)

図37 各種カラムクロマトグラフィー及び濃縮操作におけるPCBsの回収率(添加濃度: 1ng)

各カラムの溶出パターンを表34~41に示したが、シリカゲルでは、PCNs及びPCBsはヘキサンで溶出 できたが、フロリジルでは、PCNsの溶出にエーテル含有ヘキサンを用いる必要があった。PCBsのみを 分析対象とする場合は、GPC分画をPCBsのみ溶離できる条件に変更するとともに、カラムクロマトグ ラフィーの溶離条件も、ヘキサンのみでPCBsを溶離する条件(表39)に変更する方が良好なクリーンア ップ効果が得られる。

なお、5%含水シリカゲルは、いくつかの異性体で汚染が認められたことから、使用前にヘキサン(所 要溶離液量の倍量:60ml)で十分に洗浄する必要があった。また、プラスチック製カラムハウジングの カートリッジは、ハウジングからの溶出物が多かったため、最終試料液のクリーンアップに用いるカラ ムはガラス製ハウジングを使用した。一方、大容量カートリッジカラム(フロリジル5g)は、高濃縮 測定を必要としない場合に、アルカリ分解、硫酸洗浄等を省略した場合の代替クリーンアップ法として 使用できると考えられる。図38に最終試料液のマスクロマトグラム(SCAN測定)を示したが、カラム バックグランドが見える程度までクリーンアップされていた。

図38 最終試料液のマスクロマトグラフィー (SCAN測定)

表34	PCNsのシ	⁄リカ及びフ	ロリジルカー	トリッジカラム	(1g)における溶離パターン
-----	--------	--------	--------	---------	-----	-------------

	Silica	(1g.6	ml Glas	<u>s Tube)</u>	Florisil (1g、6ml Glass Tube)						
		Hex	ane		Hex	ane		5%E	therHex	ane	
	0-2ml	2-4ml	4–6ml	6-8ml	0-3ml	3–5ml	0-2ml	2-4ml	4–6ml	6-8ml	8-10ml
2-MoCN-d7	0	91	4	2	107	7	1	1	1	1	1
13C-1,3,5,7-TeCN	26	87	0	0	44	41	5	1	1	1	1
13C-1,2,3,4-TeCN	1	100	0	0	52	38	3	1	0	1	0
13C-1,2,3,5,7-PeCN	15	65	0	0	0	30	45	16	3	3	0
13C-1,2,3,5,6,7-HxCN	17	83	0	0	2	1	4	85	6	3	2
13C-1,2,3,4,5,7-HxCN	2	83	0	0	1	0	25	63	3	1	1
13C-1,2,3,4,5,6,7-Hp	6	82	0	0	0	0	0	61	2	6	0
13C-OcCN	2	84	1	1	1	29	25	2	1	1	1
1-MoCN	0	105	5	0	103	4	0	1	0	0	0
2-MoCN	0	78	3	0	91	3	0	2	0	0	0
1,4-DiCN	0	112	1	0	92	1	0	0	0	0	0
1,5-DiCN	0	108	0	0	87	1	0	0	0	0	0
2,7-DiCN	0	85	3	0	98	2	1	0	0	0	0
1,2-DiCN	0	98	4	0	95	7	0	0	0	0	0
2,3-DiCN	0	95	5	0	84	5	1	0	0	0	0
1,8-DiCN	0	72	15	0	80	19	1	0	0	0	0
1,2,3-TrCN	0	105	2	0	76	24	1	1	0	1	0
1,2,3,5/-TeCN	0	93	0	0	55	46	3	1	0	0	0
1,2,3,4-TeCN	0	92	1	0	49	49	3	1	0	0	0
2,3,6,7-TeCN	0	93	2	0	13	60	9	3	0	0	0
1,4,5,8-TeCN	1	102	2	0	98	7	0	1	0	0	0
1,2,3,8-Te4N	0	84	0	0	4	59	20	2	0	1	0
1,2,3,5,7-PeCN	4	88	0	0	0	24	45	18	1	2	1
1,2,3,4,6-PeCN	2	84	0	0	0	32	37	18	1	0	1
1,2,3,6,7-PeCN	0	97	0	0	0	24	38	22	3	3	2
1,2,3,5,8-PeCN	1	85	2	0	2	53	20	6	1	1	0
1,2,3,4,5-PeCN	0	83	0	0	4	57	23	4	1	0	0
1,2,3,5,6,7/-HxCN	2	96	1	0	0	0	6	87	6	4	2
1,2,3,5,6,8-HxCN	3	101	0	0	1	2	37	46	1	2	1
1,2,3,5,7,8-HxCN	0	91	0	0	0	1	9	78	6	5	2
1,2,4,5,7,8/-HxCN	1	88	0	0	6	37	12	1	0	1	1
1,2,3,4,5,6-HxCN	0	112	1	0	0	0	8	72	3	1	1
1,2,3,6,7,8-HxCN	0	70	0	0	0	0	0	86	3	4	1
1,2,3,4,5,6,7-HpCN	1	68	0	0	0	1	0	70	0	3	0
OcCN	1	79	0	0	0	37	18	2	0	0	0

表35-1 PCNsのフロリジルカートリッジカラム(1g)における溶離パターン

		Florisil (1g, 6ml Glass Tube)									
					He>	ane					5%Ether
	0-2ml	2−4ml	4–6ml	6-8ml	8-10ml	10-12ml	12-14ml	14-16ml	16-18ml	18-20ml	0-8ml
13C-1,3,5,7-TeCN	28	64	3	1	0	0	0	0	0	0	0
13C-1,2,3,4-TeCN	30	68	3	0	0	0	0	0	0	0	0
13C-1,2,3,5,7-PeCN	1	51	30	7	2	1	1	0	0	0	1
13C-1,2,3,5,6,7-HxCN	0	4	23	26	17	8	4	2	1	1	3
13C-1,2,3,4,5,7-HxCN	0	16	41	23	9	4	2	1	0	0	1
13C-1,2,3,4,5,6,7-Hp	0	1	4	11	16	10	11	7	5	4	9
13C-OcCN	4	62	17	2	0	0	0	0	0	0	0
1-MoCN	51	40	1	0	0	0	0	0	0	0	0
2-MoCN	63	40	1	0	0	1	0	0	0	0	0
1,4-DiCN	66	29	0	0	0	0	0	0	0	0	0
1,5-DiCN	53	45	0	0	0	0	0	0	0	0	0
2,7-DiCN	53	45	0	0	0	0	0	0	0	0	0
1,2-DiCN	44	50	1	0	0	0	0	0	0	0	0
2,3-DiCN	42	56	1	0	0	0	0	0	0	0	0
1,8-DiCN	26	67	1	0	0	0	0	1	0	0	0

添加量:5ng

表35-2 PCNsのフロリジルカートリッジカラム(1g)における溶離パターン

					orisil (lg, bml (ilass Tub	e)			
					He	ane					5%Ether
	0-2ml	2-4ml	4–6ml	6-8ml	8-10ml	10-12ml	12-14ml	14-16ml 1	6–18ml 18	3-20ml	0-8ml
1,2,3-TrCN	30	66	2	0	0	0	0	0	0	0	0
1,2,3,5/-TeCN	21	71	5	1	0	0	0	0	0	0	0
1,2,3,4-TeCN	18	76	4	1	0	0	0	0	0	0	0
2,3,6,7-TeCN	7	77	10	2	0	0	0	0	0	0	0
1,4,5,8-TeCN	40	53	1	0	0	0	0	0	0	0	0
1,2,3,8-Te4N	4	70	20	3	1	0	0	0	0	0	0
1,2,3,5,7-PeCN	1	40	35	12	3	1	1	0	0	0	1
1,2,3,4,6-PeCN	0	46	32	10	3	1	1	0	0	0	1
1,2,3,6,7-PeCN	1	39	36	13	3	1	1	0	1	0	0
1,2,3,5,8-PeCN	2	66	23	3	0	0	0	0	0	0	0
1,2,3,4,5-PeCN	2	67	21	3	1	1	0	0	0	0	0
1,2,3,5,6,7/-HxCN	0	3	18	23	19	12	6	3	2	1	3
1,2,3,5,6,8-HxCN	0	16	39	21	9	4	2	1	1	0	1
1,2,3,5,7,8-HxCN	0	1	22	23	19	9	6	3	1	1	3
1,2,4,5,7,8/-HxCN	6	72	14	2	0	0	0	0	0	0	0
1,2,3,4,5,6-HxCN	0	8	31	27	12	7	2	1	1	1	1
1,2,3,6,7,8-HxCN	0	1	16	23	19	13	6	4	1	1	3
1,2,3,4,5,6,7-HpCN	0	0	2	8	11	9	13	9	6	6	16
OcCN	2	52	27	5	1	1	0	0	0	0	0

添加量:5ng

表36 PCNsのフロ	リジル	カート	リッジカ	ラム	(5g) に	おける	溶離パ	ターン
			Florisil	(5g、	20ml Tub	e)		
	Hexane			30%E	therHexan	е		
	0-5ml	0-5ml	5-10ml 10	-15m 1	5-20ml20-	-25m 25	-30ml30)–35ml
2-MoCN-d7	0	71	25	1	0	2	0	1
13C-1,3,5,7-TeCN	0	4	85	13	2	1	1	0
13C-1,2,3,4-TeCN	0	7	88	12	1	0	0	0
13C-1,2,3,5,7-PeCN	0	0	78	27	3	1	0	0
13C-1,2,3,5,6,7-HxCN	0	0	37	49	7	2	2	0
13C-1,2,3,4,5,7-HxCN	0	0	49	41	4	2	1	0
13C-1,2,3,4,5,6,7-Hp	0	0	20	55	5	1	1	1
13C-OcCN	0	0	70	11	1	1	0	0
1-MoCN	0	78	17	1	0	0	0	1
2-MoCN	1	89	12	2	2	0	1	1
1,4-DiCN	0	104	10	1	0	0	0	0
1,5-DiCN	0	102	10	1	1	0	0	1
2,7-DiCN	0	69	21	1	0	0	1	0
1,2-DiCN	0	70	26	1	0	0	0	0
2,3-DiCN	0	64	34	3	0	0	0	0
1,8-DiCN	0	33	79	4	1	0	0	0
1,2,3-TrCN	0	40	65	4	1	1	0	0
1,2,3,5/-TeCN	0	18	83	7	2	0	0	0
1,2,3,4-TeCN	0	12	82	9	2	1	0	0
2,3,6,7-TeCN	0	1	96	10	1	0	1	0
1,4,5,8-TeCN	0	46	46	3	0	1	0	0
1,2,3,8-Te4N	0	2	91	16	2	1	0	1
1,2,3,5,7-PeCN	0	0	73	23	3	1	1	1
1,2,3,4,6-PeCN	0	0	81	20	5	0	0	1
1,2,3,6,7-PeCN	0	0	83	19	2	1	1	0
1,2,3,5,8-PeCN	0	0	96	12	1	0	0	0
1,2,3,4,5-PeCN	0	0	79	13	1	0	0	0
1,2,3,5,6,7/-HxCN	0	0	47	42	4	1	1	1
1,2,3,5,6,8-HxCN	0	0	60	28	2	2	1	1
1,2,3,5,7,8-HxCN	0	0	41	38	4	1	1	0
1,2,4,5,7,8/-HxCN	0	0	69	14	2	1	0	0
1,2,3,4,5,6-HxCN	0	0	53	31	2	1	0	0
1,2,3,6,7,8-HxCN	0	0	58	32	1	0	0	0
1,2,3,4,5,6,7-HpCN	0	0	20	56	0	1	0	0
OcCN	0	0	69	10	2	0	0	1

表37	PCNsの5%含水シリカゲルカラム	(C200,	5 g)	における溶離パターン

				Hexane	Э				1%AcHex
	0-5ml	5-10ml	10-15ml	15-20ml 20	-25ml	25-30ml 3	30–35ml 3	5-40ml	0-50ml
2-MoCN-d7	0	1	14	78	5	1	1	1	1
13C-1,3,5,7-TeCN	0	23	89	0	0	1	0	0	0
13C-1,2,3,4-TeCN	0	0	89	5	0	0	0	0	0
13C-1,2,3,5,7-PeCN	0	10	93	0	0	1	0	0	0
13C-1,2,3,5,6,7-HxCN	0	11	106	1	1	0	0	1	0
13C-1,2,3,4,5,7-HxCN	1	5	98	2	0	1	0	0	0
13C-1,2,3,4,5,6,7-Hp	1	3	95	0	0	0	0	0	0
13C-OcCN	0	0	82	0	1	0	0	2	0
1-MoCN	0	0	22	86	3	0	0	0	0
2-MoCN	0	0	42	61	2	1	0	1	0
1,4-DiCN	0	0	85	7	0	0	0	0	0
1,5-DiCN	0	0	99	6	0	0	0	0	0
2,7-DiCN	1	0	55	41	0	0	0	0	0
1,2-DiCN	0	0	45	58	2	0	0	0	0
2,3-DiCN	0	0	25	81	2	0	0	0	0
1,8-DiCN	0	0	0	76	29	0	0	0	0
1,2,3-TrCN	0	0	78	39	0	0	0	0	0
1,2,3,5/-TeCN	0	0	92	3	0	0	0	0	0
1,2,3,4-TeCN	0	0	95	5	0	0	0	0	0
2,3,6,7-TeCN	0	0	52	52	0	0	0	0	0
1,4,5,8-TeCN	0	0	62	23	0	0	0	0	0
1,2,3,8-Te4N	0	0	9	98	21	0	0	0	0
1,2,3,5,7-PeCN	0	13	96	0	0	0	0	0	0
1,2,3,4,6-PeCN	0	2	96	2	0	0	0	0	0
1,2,3,6,7-PeCN	0	0	119	25	0	0	0	0	0
1,2,3,5,8-PeCN	0	0	99	7	0	0	0	0	0
1,2,3,4,5-PeCN	0	0	96	15	0	0	0	0	0
1,2,3,5,6,7/-HxCN	0	10	100	0	0	0	0	0	0
1,2,3,5,6,8-HxCN	0	3	97	0	0	1	0	0	0
1,2,3,5,7,8-HxCN	0	0	95	0	0	0	0	0	0
1,2,4,5,7,8/-HxCN	0	0	101	1	0	0	0	0	0
1,2,3,4,5,6-HxCN	0	0	96	10	0	0	0	0	0
1,2,3,6,7,8-HxCN	0	0	44	52	0	0	0	0	0
1,2,3,4,5,6,7-HpCN	0	1	96	0	0	0	0	1	0
OcCN	0	0	83	1	0	0	0	1	0

表38-1 PCBsのシリカ及びフロリジルカートリッジカラム (1g) における溶離パターン

	Silica	(1g、6	ml Glass	s Tube)		Flo	risil (1	g、6ml	Glass Ti	ube)	
		Hex	ane		Hex	Hexane 5%EtherHexane					
	0-2ml	2-4ml	4-6ml	6-8ml	0-3ml	3-5ml	0-2ml	2−4ml	4-6ml	6-8ml	8-10ml
13C-MoCB(#3)	0	95	6	1	100	5	0	0	0	0	0
13C-DiCB(#15)	0	100	0	0	90	7	0	0	0	0	0
13C-TrCB(#31)	6	88	4	3	124	1	2	2	2	1	2
13C-TeCB(#52)	0	86	2	0	101	1	0	0	0	1	0
13C-TeCB(#77C)	0	82	4	0	54	36	1	1	0	0	0
13C-PeCB(#118C)	0	85	0	0	87	1	0	0	0	0	0
13C-PeCB(#114C)	0	88	1	0	89	2	0	0	0	0	0
13C-PeCB(#105C)	0	93	2	0	81	6	0	0	0	1	0
13C-PeCB(#126C)	0	84	1	0	42	52	4	1	0	0	0
添加量:0.6ng											

	Silica	(1g,6	ml Glass	s Tube)	Florisil (1g、6ml Glass Tube)						
		He>	ane		He>	ane		5%E	therHex	ane	
	0-2ml	2-4ml	4-6ml	6-8ml	0-3ml	3–5ml	0-2ml	2-4ml	4-6ml	6-8ml	8-10ml
13C-HxCB(#153)	2	97	1	0	99	1	0	0	0	0	0
13C-HxCB(#167C)	0	89	0	0	82	1	0	0	0	0	0
13C-HxCB(#156C)	0	90	1	0	83	3	0	0	0	0	0
13C-HxCB(#157C)	2	83	2	2	85	3	1	1	3	2	2
13C-HxCB(#169C)	0	79	1	0	10	64	12	3	0	1	0
13C-HpCB(#180C)	0	116	1	0	149	0	1	0	0	0	1
13C-HpCB(#189C)	3	107	0	0	121	1	0	0	0	0	0
13C-OcCB(#194)	2	94	1	1	101	1	0	0	0	0	1
13C-NoCB(#206)	9	89	1	1	114	2	0	0	1	0	0
13C-DeCB(#209)	20	61	0	0	105	1	0	0	0	0	0
MoCB(#1)	0	50	20	0	103	11	0	0	0	0	0
MoCB(#3)	0	61	10	0	99	10	0	0	0	0	0
DiCB(#4/#10)	0	46	27	0	92	16	1	0	0	1	1
DiCB(#8)	1	69	8	1	94	7	1	1	1	0	0
DiCB(#15)	1	74	5	1	93	10	1	0	0	1	1
TrCB(#19)	0	41	33	2	84	18	0	0	0	2	1
TrCB(#18)	2	64	14	3	88	7	1	0	1	0	1
TrCB(#28)	6	81	8	1	95	6	4	1	2	2	3
TrCB(#33)	2	75	10	0	103	11	2	1	1	1	1
TrCB(#22)	1	72	11	1	88	14	1	0	1	1	4
TrCB(#37)	2	63	1	1	79	18	2	3	2	2	0
TeCB(#54)	0	35	28	0	99	11	0	0	0	0	0
TeCB(#52)	1	62	2	0	93	4	1	0	0	0	1
TeCB(#49)	0	59	2	0	100	3	0	1	0	0	0
TeCB(#44)	1	61	7	0	87	7	1	0	0	1	0
TeCB(#74)	0	66	1	0	100	4	0	1	0	0	0
TeCB(#70)	0	70	2	0	93	5	0	0	0	1	1
TeCB(#81C)	0	63	2	0	64	23	2	0	0	0	0
TeCB(#77C)	0	54	5	0	49	44	2	0	0	1	0
PeCB(#104)	0	65	3	0	96	4	0	0	0	0	0
PeCB(#95)	0	65	5	0	95	5	0	0	0	0	0
PeCB(#101)	0	63	1	0	98	2	0	0	0	0	0
PeCB(#99)	0	69	1	0	108	3	0	0	0	0	0
PeCB(#119)	0	73	1	0	93	3	0	0	0	0	0
PeCB(#87)	0	66	3	0	87	4	0	0	0	0	0
PeCB(#110)	0	65	7	0	95	12	1	0	0	1	0
PeCB(#123C)	0	65	1	0	83	3	0	0	0	0	0
PeCB(#118C)	1	67	2	0	99	4	0	0	0	0	0
PeCB(#114C)	0	65	1	0	96	5	0	0	0	0	0
PeCB(#105C)	0	60	6	0	79	13	0	0	0	0	0
PeCB(#126C)	0	54	3	0	24	50	2	1	0	0	0
HxCB(#155)	0	73	0	0	100	1	0	0	0	0	0
HxCB(#151)	0	58	0	0	93	3	0	0	0	0	0
HxCB(#149)	0	60	1	0	101	3	0	0	0	0	0
HxCB(#153/168)	0	63	0	0	88	1	0	0	0	0	0
HxCB(#158/138)	0	69	0	0	94	4	0	0	0	0	Ō
HxCB(#128)	Ō	72	5	Ō	67	19	Ō	0	0	Ō	Ō
HxCB(#167C)	Ō	67	1	Ō	87	1	Ő	0	0	Ő	Ō
HxCB(#156C)	Ō	62	1	Ō	82	3	Ő	Ő	Õ	Ő	Ō
HxCB(#157C)	Ō	69	3	Ō	82	6	0	0 0	0 0	0	Ū
HxCB(#169C)	0 0	71	1	Õ	7	60	12	4	0	1	Õ
<u>沃加景:06mg</u>			•	~						•	<u> </u>

表38-2 PCBsのシリカ及びフロリジルカートリッジカラム (1g) における溶離パターン

	Silica (1g, 6ml Glass Tube)				Florisil (1g、6ml Glass Tube)						
		Hex	ane		Hex	ane		5%E	therHex	ane	
	0-2ml	2–4ml	4-6ml	6-8ml	0-3ml	3–5ml	0-2ml	2-4ml	4–6ml	6-8ml	8-10ml
HpCB(#188)	1	87	0	0	132	1	0	0	0	0	1
HpCB(#178)	0	88	1	1	141	1	0	0	0	0	0
HpCB(#187)	0	79	1	0	133	1	0	1	1	0	1
HpCB(#183)	0	80	1	0	155	1	0	1	0	0	0
HpCB(#177)	1	91	0	0	103	9	0	0	0	0	1
HpCB(#171)	1	75	3	0	126	3	0	0	0	0	0
HpCB(#180C)	1	80	0	0	145	1	0	0	0	0	0
HpCB(#191)	0	73	1	0	131	3	0	0	0	0	0
HpCB(#170C)	1	83	2	0	122	4	0	0	0	0	0
HpCB(#189C)	0	89	0	0	138	0	0	0	0	0	0
OcCB(#202)	0	70	1	0	107	1	0	0	0	0	0
OcCB(#201)	1	72	1	0	104	2	0	0	0	0	0
OcCB(#199)	0	71	0	0	104	1	0	0	0	0	0
OcCB(#194)	1	71	0	0	95	1	0	0	1	0	0
OcCB(#205)	1	70	1	0	97	2	0	0	0	0	0
NoCB(#208)	2	70	0	0	122	1	0	0	0	0	0
NoCB(#206)	1	64	0	0	116	2	0	0	0	0	0
DeCB(#209)	5	54	0	0	110	1	0	0	0	0	0

表38-3 PCBsのシリカ及びフロリジルカートリッジカラム(1g)における溶離パターン

表39-1 PCBsのフロリジルカートリッジカラム(1g)における溶離パターン

	Florisil (1g, 6ml Glass Tube)										
					Hexan	е					5%Ether
	0-2ml	2-4ml	4–6ml	6-8ml	8-10ml10-	-12m 12-	-14m 14-	-16m 16-	-18m 18	-20m	0-8ml
13C-MoCB(#3)	53	45	1	0	0	0	0	0	0	0	0
13C-DiCB(#15)	51	45	1	0	0	0	0	0	0	0	0
13C-TrCB(#31)	84	25	2	4	0	0	0	0	0	0	0
13C-TeCB(#52)	85	22	1	0	0	0	0	0	0	0	0
13C-TeCB(#77C)	29	72	2	0	0	0	0	0	0	0	0
13C-PeCB(#118C)	74	23	1	0	0	0	0	0	0	0	0
13C-PeCB(#114C)	79	28	0	0	0	0	0	0	0	0	0
13C-PeCB(#105C)	52	49	1	0	0	0	0	0	0	0	0
13C-PeCB(#126C)	19	72	4	0	0	0	0	0	0	0	0
13C-HxCB(#153)	84	20	0	0	0	0	0	0	0	0	0
13C-HxCB(#167C)	88	21	0	0	0	0	0	0	0	0	0
13C-HxCB(#156C)	72	30	1	0	0	0	0	0	0	0	0
13C-HxCB(#157C)	77	35	3	1	0	0	0	0	0	0	0
13C-HxCB(#169C)	11	73	9	2	0	0	0	0	0	0	0
13C-HpCB(#180)	94	14	0	0	0	0	0	0	0	0	0
13C-HpCB(#189C)	80	14	0	0	0	0	0	0	0	0	0
13C-OcCB(#194)	75	16	0	0	0	0	0	0	0	0	0
13C-NoCB(#206)	77	16	1	0	0	0	0	0	0	0	0
13C-DeCB(#209)	93	11	0	0	0	0	0	0	0	0	0
MoCB(#1)	31	67	1	0	0	0	0	0	0	0	0
MoCB(#3)	37	59	1	0	0	0	0	0	0	0	0
DiCB(#4/#10)	27	70	2	0	0	0	0	0	0	0	0
DiCB(#8)	39	57	2	0	0	0	0	0	0	0	0
DiCB(#15)	39	62	1	0	0	0	0	0	0	0	0
TrCB(#19)	29	65	3	0	0	0	0	0	0	0	0
TrCB(#18)	43	49	2	1	0	0	0	0	0	0	0
TrCB(#28)	58	45	1	0	0	0	0	0	0	0	0
TrCB(#33)	44	57	1	0	0	0	0	0	0	0	0
TrCB(#22)	28	69	2	0	0	0	0	0	0	0	0
TrCB(#37)	26	66	3	1	0	0	0	0	0	0	0

添加量:5ng

				Flo	risil (1	g, 6ml (Glass Tu	be)			
	Hexane									5%Ether	
	0-2ml	2-4ml	4–6ml	6-8ml	8-10ml	10-12m	12-14m	14–16m [:]	16-18m 1	8 -20 m	0-8ml
TeCB(#54)	37	64	1	0	0	0	0	0	0	0	0
TeCB(#52)	69	38	0	0	0	0	0	0	0	0	0
TeCB(#49)	65	40	1	0	0	0	0	0	0	0	0
TeCB(#44)	49	62	1	0	0	0	0	0	0	0	0
TeCB(#74)	66	42	1	0	0	0	0	0	0	0	0
TeCB(#70)	61	43	0	0	0	0	0	0	0	0	0
TeCB(#81)	32	66	3	0	0	0	0	0	0	0	0
TeCB(#77C)	15	86	4	0	0	0	0	0	0	0	0
PeCB(#104)	62	38	0	0	0	0	0	0	0	0	0
PeCB(#95)	56	44	1	0	0	0	0	0	0	0	0
PeCB(#101)	70	35	1	0	0	0	0	0	0	0	0
PeCB(#99)	71	35	1	0	0	0	0	0	0	0	0
PeCB(#119)	65	36	1	0	0	0	0	0	0	0	0
PeCB(#87)	55	53	1	0	0	0	0	0	0	0	0
PeCB(#110)	41	62	1	0	0	0	0	0	0	0	0
PeCB(#123)	65	38	1	0	0	0	0	0	0	0	0
PeCB(#118C)	61	37	1	0	0	0	0	0	0	0	0
PeCB(#114C)	58	40	1	0	0	0	0	0	0	0	0
PeCB(#105C)	37	62	1	0	0	0	0	0	0	0	0
PeCB(#126C)	13	75	7	1	0	0	0	0	0	0	0
HxCB(#155)	84	24	0	0	0	0	0	0	0	0	0
HxCB(#151)	70	33	0	0	0	0	0	0	0	0	0
HxCB(#149)	65	42	1	0	0	0	0	0	0	0	0
HxCB(#153/168)	74	32	0	0	0	0	0	0	0	0	0
HxCB(#158/138)	61	46	1	0	0	0	0	0	0	0	0
HxCB(#128)	26	66	1	0	0	0	0	0	0	0	0
HxCB(#167C)	68	31	0	0	0	0	0	0	0	0	0
HxCB(#156C)	62	49	0	0	0	0	0	0	0	0	0
HxCB(#157C)	57	54	1	0	0	0	0	0	0	0	0
HxCB(#169C)	7	73	17	2	0	0	0	0	0	0	0
HpCB(#188)	77	28	0	0	0	0	0	0	0	0	0
HpCB(#170)	76	30	0	0	0	0	0	0	0	0	0
HpCB(#187)	76	27	0	0	0	0	0	0	0	0	0
HpCB(#183)	79	29	0	0	0	0	0	0	0	0	0
HpCB(#177)	44	53	1	0	0	0	0	0	0	0	0
HpCB(#171)	63	44	1	0	0	0	0	0	0	0	0
HpCB(#180)	74	28	1	0	0	0	0	0	0	0	0
HpCB(#191)	71	30	1	0	0	0	0	0	0	0	0
HpCB(#170)	56	49	1	0	0	0	0	0	0	0	0
HpCB(#189C)	76	33	0	0	0	0	0	0	0	0	0
OcCB(#202)	71	28	0	0	0	0	0	0	0	0	0
OcCB(#201)	74	27	0	0	0	0	0	0	0	0	0
OcCB(#199)	72	29	0	0	0	0	0	0	0	0	0
OcCB(#194)	59	25	0	0	0	0	0	0	0	0	0
OcCB(#205)	74	30	0	0	0	0	0	0	0	0	0
NoCB(#208)	78	24	0	0	0	0	0	0	0	0	0
NoCB(#206)	71	25	0	0	0	0	0	0	0	0	0
DeCB(#209)	77	23	0	0	0	0	0	0	0	0	0

表39-2 PCBsのフロリジルカートリッジカラム(1g)における溶離パターン

添加量:5ng

	Florisil (5g、20ml Tube)								
-	Hexane			30%	EtherHexa	ane			
	0-5ml	0-5ml	5-10ml	10-15ml	15-20ml	20-25ml	25-30ml	30-35ml	
13C-MoCB(#3)	0	48	50	3	1	0	0	1	
13C-DiCB(#15)	0	39	54	3	0	0	0	0	
13C-TrCB(#31)	3	81	19	0	6	2	1	3	
13C-TeCB(#52)	0	94	12	1	1	0	0	0	
13C-TeCB(#77C)	0	6	86	11	1	0	0	0	
13C-PeCB(#118C)	0	99	17	2	0	0	0	0	
13C-PeCB(#114C)	0	90	21	2	0	0	0	0	
13C-PeCB(#105C)	0	43	61	5	0	0	0	0	
13C-PeCB(#126C)	0	2	90	11	2	1	1	0	
13C-HxCB(#153)	0	107	7	1	0	0	0	0	
13C-HxCB(#167C)	0	102	9	2	1	0	0	0	
13C-HxCB(#156C)	0	92	22	2	1	0	0	0	
13C-HxCB(#157C)	2	77	31	4	2	2	1	1	
13C-HxCB(#169C)	0	1	91	15	3	2	1	1	
13C-HpCB(#180C)	0	87	5	1	Ō	1	0	0	
13C-HpCB(#189C)	0	83	9	2	0	1	0	1	
13C-OcCB(#194)	0	99	5	1	0	0	0	1	
13C-NoCB(#206)	0	93	7	1	1	1	1	0	
13C-DeCB(#209)	0	94	4	1	1	0	0	0	
MoCB(#1)	0	45	45	2	0	0	0	0	
MoCB(#3)	0	57	37	1	0	0	0	0	
DiCB(#4/#10)	1	39	52	2	1	1	0	0	
DiCB(#8)	0	65	35	2	1	1	0	1	
DiCB(#15)	0	58	45	3	0	0	0	0	
TrCB(#19)	0	41	55	2	2	0	1	5	
TrCB(#18)	2	87	21	3	1	0 0	1	3	
TrCB(#28)	2	84	19	1	. 1	1	0	1	
TrCB(#33)	2	73	32	2	. 1	. 1	0	0	
TrCB(#22)	0	42	59	4	2	1	0	0	
TrCB(#37)	2	35	67	4	1	. 1	1	2	
TeCB(#54)	0	59	36	1	0	0	0	0	
TeCB(#52)	1	98	7	1	0	0	0	0	
TeCB(#49)	0	91	. 8	1	0	0 0	0	0	
TeCB(#44)	0	78	26	2	1	0	0	0	
TeCB(#74)	0	83	9	1	0	0	0	0	
TeCB(#70)	0	92	14	2	0	0	0	0	
TeCB(#81C)	0	30	68	4	1	0 0	0	0	
TeCB(#77C)	0	10	85	5	1	0	0	0	
PeCB(#104)	0	91	9	1	0	0	0	0	
PeCB(#95)	0	87	12	1	0	0	0	0	
PeCB(#101)	1	102	5	1	1	0	0	0	
PeCB(#99)	0	114	7	1	1	0	0	0	
PeCB(#119)	0		. 8	1	0	0 0	0	0	
PeCB(#87)	0	94	17	1	0	1	0	0	
PeCB(#110)	1	71	40	2	0 0	0	0 0	Ő	
PeCB(#123C)	0	102	, S Q	1	1	0	0	0 0	
PeCB(#118C)	ñ	.97	11	1	, 0	1	0	0	
PeCB(#114C)	ñ	89, 88	13	1	0	'n	0	n	
PeCB(#105C)	0	58	51	2	1	0	0	0	
PeCB(#126C)	Õ	4	100	8	1	0	ů 0	0	

表40-1 PCBsのフロリジルカートリッジカラム (5g) における溶離パターン

	Florisil (5g, 20ml Tube)										
	Hexane			30%	EtherHexa	ane					
	0-5ml	0-5ml	5-10ml	10-15ml	15-20ml	20-25ml	25-30ml	30-35ml			
HxCB(#155)	0	101	2	0	0	0	0	0			
HxCB(#151)	0	106	5	1	1	0	0	0			
HxCB(#149)	0	98	9	1	0	0	1	0			
HxCB(#153/168)	0	108	4	1	0	0	0	0			
HxCB(#158/138)	0	103	13	1	1	0	0	0			
HxCB(#128)	0	40	65	4	0	0	0	0			
HxCB(#167C)	0	106	5	1	0	0	0	0			
HxCB(#156C)	0	104	16	2	0	0	0	0			
HxCB(#157C)	0	98	21	1	1	0	0	0			
HxCB(#169C)	0	1	100	9	1	0	1	1			
HpCB(#188)	0	78	2	1	0	0	0	0			
HpCB(#178)	0	93	4	1	0	0	0	0			
HpCB(#187)	0	94	4	1	0	1	0	0			
HpCB(#183)	0	84	4	1	0	0	0	0			
HpCB(#177)	0	66	21	2	0	0	0	0			
HpCB(#171)	0	87	14	1	1	1	0	0			
HpCB(#180C)	0	95	5	1	1	2	1	0			
HpCB(#191)	0	93	5	2	1	0	0	0			
HpCB(#170C)	0	76	17	2	1	0	0	0			
HpCB(#189C)	0	81	6	1	1	0	0	0			
OcCB(#202)	0	98	3	1	0	0	0	0			
OcCB(#201)	0	95	3	1	0	0	0	0			
OcCB(#199)	0	105	4	1	0	1	0	0			
OcCB(#194)	0	97	5	1	0	0	0	0			
OcCB(#205)	0	97	4	1	0	0	0	0			
NoCB(#208)	0	100	2	1	0	0	0	0			
NoCB(#206)	0	108	3	0	1	1	0	0			
DeCB(#209)	0	102	2	1	0	0	0	0			

表40-2 PCBsのフロリジルカートリッジカラム (5g) における溶離パターン

表41-1 PCBsの5%含水シリカゲルカラム(C200, 5g)における溶離パターン

_		Hexane								
	0-5ml	5-10ml	10-15ml	15-20ml	20-25ml	25-30ml	30-35ml	35-40ml	0-50ml	
13C-MoCB(#3)	0	0	0	40	47	5	0	1	0	
13C-DiCB(#15)	0	0	1	73	17	0	0	0	0	
13C-TrCB(#31)	2	4	64	53	11	5	7	1	11	
13C-TeCB(#52)	0	0	38	59	1	0	0	0	0	
13C-TeCB(#77C)	0	0	0	72	22	1	0	0	0	
13C-PeCB(#118C)	0	0	62	37	1	0	1	1	0	
13C-PeCB(#114C)	0	0	61	39	0	0	0	1	0	
13C-PeCB(#105C)	0	0	2	72	16	0	1	1	0	
13C-PeCB(#126C)	0	0	11	87	10	0	1	0	0	
13C-HxCB(#153)	1	0	79	12	0	0	0	0	0	
13C-HxCB(#167C)	0	0	81	18	0	0	0	0	0	
13C-HxCB(#156C)	0	0	63	45	1	0	0	0	0	
13C-HxCB(#157C)	2	2	26	71	8	3	2	2	3	
13C-HxCB(#169C)	0	0	51	51	2	0	0	0	0	
添加量:0.6ng										

									10/ 4 11
-	0_5-	5-10ml	10-15ml	15_20ml	ane	25-20ml	20_25ml	25-40mal	1%AcHex
13C-HpCB(#180C)	0-5mi	<u>0-10m</u>	10-13mi 73	10-2011	20-25mi	20-3000	<u>30-35mi</u> 0	30-40mi 0	0-30mi
$13C - H_p CB(\#189C)$	0	1	73	12	0	0	0	0	0
$13C - O_{c}CB(\#194)$	Ő	0	81	10	Ő	Ő	1	1	0
13C-NoCB(#206)	Ő	2	85	3	Ő	1	1	1	0
13C-DeCB(#209)	Ő	26	75	0	Ő	0	0	1	0
MoCB(#1)	0	0	0	7	69	20	1	0	0
MoCB(#3)	0	0	0	43	46	5	0	0	0
DiCB(#4/#10)	Ō	Ō	Ō	7	70	24	1	Ō	Ō
DiCB(#8)	2	1	3	75	20	1	2	1	0
DiCB(#15)	1	1	3	73	14	0	2	0	0
TrCB(#19)	1	1	2	9	69	21	2	0	2
TrCB(#18)	3	1	4	77	28	2	6	1	1
TrCB(#28)	14	7	59	61	11	10	18	1	0
TrCB(#33)	3	2	7	81	17	3	4	2	1
TrCB(#22)	3	1	4	69	25	2	4	0	1
TrCB(#37)	2	2	5	76	15	2	3	1	4
TeCB(#54)	0	0	0	29	56	13	0	0	0
TeCB(#52)	3	0	50	65	3	2	3	0	0
TeCB(#49)	2	1	54	45	3	1	3	0	0
TeCB(#44)	3	1	2	88	21	3	3	0	0
TeCB(#74)	1	1	68	35	2	2	3	0	0
TeCB(#/0)	3	2	44	64	3	2	3	0	0
TeCB(#81C)	0	0	32	/2	4	0	0	0	0
IeUB(#//U)	0	0	1	80	20	0	1	0	0
PeCB(#104)	0	0	40	00 07	2	1	0	0	0
PeCB(#93)	1	0	19	0/ 22	9	1	2	0	0
PeCB(#101)	0	0	67	26	1	1	2	0	0
PeCB(#119)	0	0	80	20	0	0	0	0	0
PeCB(#87)	0	0	25	81	6	1	0	0	0
PeCB(#110)	1	Ő	20	90	13	1	2	Ő	0
PeCB(#123C)	0	0	65	29	0	0	0	0	0
PeCB(#118C)	0	0	60	38	1	0	1	0	0
PeCB(#114C)	0	0	62	36	0	0	0	0	0
PeCB(#105C)	0	0	3	76	16	1	0	0	0
PeCB(#126C)	0	0	13	84	8	0	0	0	0
HxCB(#155)	0	1	99	1	0	0	0	0	0
HxCB(#151)	0	0	74	21	1	0	1	0	0
HxCB(#149)	0	0	51	50	3	0	0	0	0
HxCB(#153/168)	0	0	85	11	0	0	0	0	0
HxCB(#158/138)	0	0	58	37	1	0	0	0	0
HxCB(#128)	0	0	1	87	23	1	0	0	0
HxCB(#167C)	0	0	76	14	0	0	0	0	0
HxCB(#156C)	0	0	5/	42	0	0	0	0	0
HXCB(#15/C)	0	0	25	62	0	0	0	0	0
$H_{X}CB(\#109C)$	0	0	42	23	2	0	0	0	0
$H_{p}CD(#100)$	0	0	0Z 72	ى ە	0	0	0	0	0
$H_{p}CB(#178)$	0	0	75	o Q	0	0	0	0	1
$H_{p}CB(#183)$	0	0	80	7	0	0	1	0	0
$H_{p}CB(#103)$	0	1	45	30	1	0	1	0	0
$H_{p}CB(#171)$	Ő	0	60	30	1	Ő	0	Ő	0
$H_pCB(#180C)$	1	0	89	8	0	1	1	0	0
$H_pCB(#191)$	0	0	82	13	0	0	0	0	0
HpCB(#170C)	Ō	1	44	45	1	0	Ō	Ō	Ō
HpCB(#189C)	1	0	77	22	0	1	0	0	0
OcCB(#202)	0	0	97	5	0	0	0	0	0
OcCB(#201)	0	1	93	4	0	0	0	0	0
OcCB(#199)	0	0	84	9	0	0	0	0	0
OcCB(#194)	1	0	91	12	0	0	0	0	0
OcCB(#205)	0	0	97	6	0	0	0	0	0
NoCB(#208)	0	5	89	1	0	0	0	0	0
NoCB(#206)	0	2	93	1	0	0	0	0	0
DeCB(#209)	0	27	63	0	0	0	0	0	0

表41-2 PCBsの5%含水シリカゲルカラム(C200, 5g)における溶離パターン

(9)活性炭系カラムクロマトグラフィーの検討

底質中に多量に含まれる鉱物油、PAHs等の分離を目的に、活性炭系カラムクロマトグラフィーの検 討を行った。カラムは、兵庫県が大気中PCNsの分析法⁵⁾で採用した炭素系のCarboxen 1000と吸着性の 弱いカーボングラファイト系のENVI-Carbについて検討を行ったが、特にCarboxen 1000は、図39に示す ように吸着力が強いためにトルエンを用いてバックフラッシュ(BF)溶出する必要があり、完全な回収 を行うためには、兵庫県が実施したように多量(80ml)の加熱トルエンを用いる必要があった。ENVI-Carbの場合、全体の回収率は高い傾向にあったが、1,2,3,5,6-PeCN、1,2,3,4,6,7/1,2,3,5,6,7-HxCN等の異性 体は低い回収率を示した(図40)。活性炭系カラムは、図41に示すように、底質中の鉱物油、PAHs、 着色成分等の除去に極めて有効で、また、コプラナー性異性体の分離にも有効であるが、PCNs全異性体 の回収が困難なこと、また、GPC処理とカートリッジカラム処理により十分なクリーンアップ効果が 得られたことから、活性炭系カラムは分析法に採用しなかった。

図39 炭素系カラム (Carboxen 1000、100mg) によるPCNsの回収率

図40 カーボングラファイト系カラム (ENVI-Carb、250mg/6ml) によるPCNsの回収率

図41 カーボングラファイト系カラム(ENVI-Carb、250mg/6ml)の底質試料に対する効果

(10) 底質抽出方法の検討

底質試料の抽出方法として、湿泥を対象としたアセトン抽出法と乾泥を対象としたトルエンを用いた ソックスレー抽出法を検討した。両者におけるPCNsの回収率を図42に示すが、サロゲート物質の回収率 は、2-MoCN-d7以外は大差なかったが、分析対象物質は3塩化物以下の異性体の回収率がアセトン抽出 法で低下する傾向を示した。一方、PCBsについても、アセトン抽出法は3塩化物以下の異性体の回収率 が低下していた(図43)。

トルエンを用いたソックスレー抽出法は、夾雑物の溶出量が少なく、添加回収率も比較的高く安定した傾向を示すが、試料を予め風乾する必要があるため、風乾過程における低塩化物異性体の損失が懸念 される。風乾過程における目的物質の損失の可能性については検討していないため、今後の検討課題と なっている。

図42 底質抽出方法の違いが及ぼすPCNs回収率への影響

図43 底質抽出方法の違いが及ぼすPCBs回収率への影響

(11) 認証値のある標準底質を用いた分析法の検証

日本分析化学会が作成した河川底質標準試料¹⁸⁾を用いて分析値の比較検討を試みた。アセトン抽出 法とトルエンを用いたソックスレー抽出法について、コプラナーPCBの分析化学会認証値と比較したが、 図44に示すように、DB-5MSカラムで他の異性体との分離に問題がある#128を除いて、その定量値は良 い一致を示した。底質についても、実際の環境調査に適用したが、最大13.5%のIL値を示す河川底質も 問題なく分析できた。

図44 日本分析化学会河川底質標準試料を用いた定量値の比較

(12) 脂肪負荷量の検討

魚介類中の脂肪量は、魚種、魚齢の違いにより大きく異なるため、脂肪量が多い試料はクリーンアップ効果が低下する危険性がある。このため、生物の分析法(ヘキサン抽出法)について、アルカリ分解に供する脂肪量を増加させて分析を行い、その定量値に対する脂肪負荷量の影響を検討した。図45に示すように、脂肪中に含まれる対象物質の相対検出量は脂肪量に正比例して増加した。一方、アルカリ分解時に一定量添加したサロゲート物質の定量値は脂肪量が増加してもほぼ一定の値を示した。この試験の結果、分析法は2gまでの脂肪量に分析法が耐えられることが判明したが、本分析法を適用した魚介類のモニタリング調査では最大脂肪含量が17.5%(3.5g)達する例があったが、分析に支障は生じなかった。

図45 生物試料分析法(ヘキサン抽出法)における脂肪負荷量の影響

5. マススペクトル

検討対象物質のマススペクトルを図46に示す。

図46-1 PCNs対象物質のマススペクトル

図46-2 PCNs及びPCBs対象物質のマススペクトル

図46-3 PCBs対象物質のマススペクトル

図46-4 PCNs及びPCBsサロゲート物質のマススペクトル

図46-5 PCBsサロゲート物質のマススペクトル

図46-6 PCNs及びPCBs内標準物質のマススペクトル

6. マスクロマトグラム

(1) 標準品のSIMクロマトグラム

検討対象物質のSIMクロマトグラムを図47 (PCNs)及び図48 (PCBs、BP-MS:62成分)に示す。 PCNsは図47に示すように4グループに分割して定量する。PCBsは2回の測定(図48-1:1~3塩化 物及び8~10塩化物の2グループ、図48-2:4~7塩化物)により全異性体を定量する。

なお、PCBs全異性体の分離状況は、表32(4項、分析法の検討)に示した。